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Abstract

This paper presents an application of the rheological–dynamical analogy (RDA) for describing the various aspects of

a visco-elasto-plastic behavior of metallic bars related to standard tensile tests. The analogy has been developed on the

basis of mathematical–physical analogy between a visco-elasto-plastic rheological model and a dynamical model with

viscous damping, and is aimed to be used for the analysis of inelastic deforming of materials and structures. In this

presentation, the aim will be to highlight the thermodynamics aspect of proportional stress through hysteretic loop

dissipation, oscillation in the stress–strain curve (lower and upper yield point), transition from plasticity range, tran-

sition from strain hardening range, and RDA fracture stress of thin long metallic bars. This paper provides description

of process of visco-elasto-plastic yielding and numerical example of obtaining isochronous r–e diagram of metallic bars

using RDA similitude. In order to demonstrate the ability of the RDA modeling technique, the comparison with

experimental and numerical results by [ASCE, J. Eng. Mech. 125(12) (1999) 1243] is presented. The presented RDA

analysis can be readily used to perform precise shape of isochronous r–e diagrams of metallic bars. The RDA isoch-

ronous stress–strain diagram is used to predict the loading functions for the material of metallic bars.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Rheological–dynamical analogy; RDA modulus; RDA similitude; Isochronous RDA r–e diagrams; Loading function
1. Introduction

About a century has passed since the widespread interest in the subject of inelastic behavior of load-

carrying members began to develop. The subject has been divided broadly into two rather distinct areas.

One area concerns the study of the inelastic behavior of members that are subjected to loads under envi-

ronmental conditions (especially temperature and rate of loading) such that time is not a factor; this type of
inelastic behavior is said to be time independent. For example, members made of most metals and subjected

to static loads at room temperatures will exhibit time-independent inelastic behavior when the loads are

increased beyond the elastic-limit load. The second area concerns the study of the inelastic behavior of
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members that are subjected to loads under environmental conditions such that time is a factor; this type of

inelastic behavior is said to be time dependent. For example, members made of most plastic materials and

subjected to static loads at room temperature will exhibit inelastic behavior, called creep, for all levels of the

load. The longer the time of application of the static load, the greater is the magnitude of the inelastic
deformation when creep occurs.

Although the overall behavior of mild steel members is well documented from many tests, the practical

influence of strain hardening on load capacity, discontinuous plastic deformation, and creep effect has

received little attention so far. The classical theory of plasticity is based on the assumption that the material

is perfectly plastic with identical properties in tension and compression. The material does not exhibit strain

hardening but flows plastically under constant stress. All limit design theories and most metal forming

theories are based on these stress–strain relations. However, the phenomenon of discontinuous plastic

deformation, which is more, pronounced in low than in high-purity metals (Bell, 1973, Section 4.31) cannot
be obtained by above assumptions. If the tension test of a so-called ductile metal is made at higher rates of

application of the load (that is, higher strain rates) than it is used in the ordinary standard procedure, the

magnitude of the inelastic strain which precedes fracture may be greatly reduced and the stresses corre-

sponding to any given strain may be raised (Elam, 1938). Conversely, the yield stress of the material may be

lowered slightly if the strain rate is appreciably lower than one used in the ordinary standard procedure. In

the tension test of a metal it will be recognized that, when low temperature is combined with high strain

rates, the reduction that occurs in the magnitude of the inelastic strain preceding fracture is greater than

when only one of these effects is present.
The phenomenon of discontinuous plastic deformation has been seriously considered from the

beginning of the 19th Century up to today (Froli and Royer-Carfagni, 2000). The subject has been

analyzed into two distinct ways. In one way of thinking, the oscillations can be attributed to the

influence of the testing machine stiffness. Based on this concept Siebel and Schwaigerer (1937–1938)

analyzed the influence of testing-device stiffness on the shape of the r–e diagrams. These results were

later confirmed by Miklowitz (1947). The other approach considers them as the reflection of an internal

material instability, irrespective of the loading device (Lempriere, 1962). The concept of distinction

between an ‘averaged’ and a ‘local’ material response was suggested by Froli and Royer-Carfagni (1997,
1999, 2000).

The present paper represents an attempt to interpret the problems associated with the tensile response of

metallic bars, both time independent and time dependent, in the unified manner by solving both types of

problems using the same iterative rheological–dynamical analogy (RDA) procedure. After several years of

research, the author has found that using the rheological–dynamical modulus relationship can solve both

types of problems of isochronous stress–strain relationships. The fundamental statement of this theoretical

tool and the governing differential equations have already been explained by Mila�sinovi�c (2000) where

RDA was used to predict the buckling behavior of slender columns. In the second paper, the author
(Mila�sinovi�c, 2003) demonstrates that RDA is also capable to model the fatigue behavior of axially,

cyclically loaded bars.

In this paper the proportional stress or reaction-stress of clamped metal bar under axially fatigue process

is obtained using physical characteristics of metal only, like as: specific heat, coefficient of linear thermal

expansion and mass density. Elasticity stress of the bar under compression is obtained by RDA formula

from which we have that elasticity stress also becomes dependent upon the dimensions of the bar (its length

and diameter) and thus is no more a physical characteristics of the material only. In ductile materials like

metals, some difference between point of proportionality and point of elasticity produce the deviation from
perfect elasticity with dissipation of mechanical energy through quasi-viscous flow or visco-elastic creep.

This is the reason of the drop in the stress–strain curve in the average r–e diagrams (upper-yield and lower-

yield point). Transition from plasticity range continues until the magnitude of the error of the stress level

for plastic yielding becomes lesser than some previously assigned value.
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Strain hardening is the term used to define the increase in strength with increasing strain as plastic

deformation or flow occurs beyond the lower-yield point. Strain hardening range is difficult to obtain by the

experimental investigations, except determination the ultimate or fracture stress and strain. In the present

paper this phenomena is explained in terms of visco-plastic yielding. Iterative RDA procedure for stress
levels and strains for visco-plastic yielding, which include explanation of fatigue process and reduction of

cross-section area with fracture of the bar, is derived. Bernoulli’s energy theorem is used for the evaluation

of the localized reduction of cross-section area. Transition from visco-plasticity range continues until the

magnitude of the error of the stress level for visco-plastic yielding becomes lesser than some previously

assigned value.

Loading functions for the material of metallic bars are obtained using by Hencky’s total-strain theory

under the assumption of compressibility in the plastic and assumption of incompressibility in the strain

hardening range.
2. Rheological–dynamical analogy (RDA)

All inelastic deformation is time sensitive, and because of that the rheological analysis proves
unavoidable. Elasticity, plasticity, viscosity and strength are essential rheological properties from which

most of other complex properties may be derived (Reiner, 1955).

Creep properties are usually obtained from tension and compression specimens subjected to constant

loads at constant temperature. A typical tension creep curve is shown in Fig. 1. The strain at zero time has

an elastic component. A mechanical disturbance (strain) propagates in an elastic medium at the finite

velocity
p
EH=q. In a primary creep range, the creep rate continues to decrease with time. If the material

exhibits a minimum strain rate r0=kK, the secondary creep rate designates the range of steady-state creep.

At the end of the secondary creep range, the effect of the increase of stress is the speared because the
reduction in cross-sectional area begins to influence on deformation so that the strain rate increases with
Fig. 1. Typical constant load–tension creep curve.
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time until fracture occurs. The latter range of the creep curve may not exist for other states of stress;

consequently the tertiary creep range is usually not considered in creep theories.

Every strain, in principle, is a function of time because a stress is always introduced into the body during

a definite time interval (even a very small one) and therefore the isochronous stress–strain relationship must
be included in the analysis of material effects. The significant aspect of the three phenomena of isochronous

stress–strain relationships mentioned so far according to the RDA can be represented as indicated in Fig. 2.

Path APE includes the elastic effect; path EYLYUC includes visco-elastic–plastic effect; path CD includes

visco-plastic effect with reduction of cross-section area.

As stated earlier (path APE), the majority of materials are in the elastic and visco-elastic range in the

conditions of low loading, whereas after reaching the yield stress, it transits to the visco-elastic–plastic (path

EYLYUC) and visco-plastic (path CD) range.
Polakowski and Ripling (1966) has explained the flow, which occurs beyond the lower-yield point in

terms of dislocation theory. Here, it is assumed that the strain is measured when the specified stress has

been reached. Strain eE obtained in this way shall be considered to be independent of time, i.e. instanta-

neous. Elastic material behavior can be modeled by a linear spring ðHÞ. Therefore, instantaneous or initial
strain should be eE ¼ r0=EH where EH is the elastic modulus. The time-dependent, or delayed, eve and evp
strains are measured from the time, when the instantaneous strain has developed. Delayed elastic or visco-

elastic strain eve may be imagined as a common behavior of elastic EK and viscous kK materials and

modeled by Kelvin’s model ðKÞ. The concept of delayed plastic or visco-plastic material behavior evp may

be imagined as a common behavior of the friction slider component rSV and viscous component kN of
materials. The friction slider develops a stress rSV, becoming active only if rP Y ¼ rY þ H 0 � evpðtÞ, where r
is the total applied stress and Y is some limiting yield value. The stress level in the friction slider depends on

whether the threshold or yield stress Y , has been reached. If the stress r is discontinued, the friction slider

does not return into its original position. Visco-plastic material behavior can be modeled by the third of the

sequentially linked models (N/StV) as shown in Fig. 3. Initial strain rate should be _e ¼ r=kK þ ðr � rYÞ=kN.

In general each isochronous stress–strain diagram can be accurately approximated by following struc-

tural (rheological) equation if strain can be represented as indicated in Fig. 1
Fig. 2. Isochronous stress–strain curve illustrating elastic, visco-elastic–plastic and visco-plastic effects.
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H� K� ðN jStVÞ: ð1Þ

The governing differential equation has already been explained by (Mila�sinovi�c, 2000)
€eðtÞ þ _eðtÞ EK

kK

�
þ H 0

kN

�
þ eðtÞEKH 0

kKkN

¼ €rðtÞ
EH

þ _rðtÞ EK

kKEH

�
þ H 0

kNEH

þ 1

kK

þ 1

kN

�
þ rðtÞ EK

kKkN

�
þ H 0

kKkN

þ EKH 0

kKkNEH

�
� rY

EK

kKkN

: ð2Þ
The homogeneous equation of the inhomogeneous equation (2) has the following form:
€eðtÞkKkN þ _eðtÞðEKkN þ H 0kKÞ þ eðtÞEKH 0 ¼ 0; ð3Þ

where kK, kN, EK and H 0 are given constants at fixed step time. Physical mechanism of the rheological–

dynamical analogy and the governing equations between parameters where confirmed by Mila�sinovi�c
(2003).

Based on the analogy, one very complicate nonlinear visco-elasto-plastic problem may be solved as a

simpler linear dynamical one.

Replacing kK � kN by m � c, EK � kN þ H 0 � kK by c � c and EK � H 0 by k � c, the differential equation (3)

becomes
€eðtÞmþ _eðtÞcþ eðtÞk ¼ 0; ð4Þ

where
m ¼ kKkN

c
; c ¼

EKkN þ H 0kK

� �
c

; k ¼ EKH 0

c
: ð5Þ
According to a dynamical model and the RDA the periodic stress may be expressed by means of the

exponential function
r00 ¼ rAe
ixrt; ð6Þ
The strain lagging behind the stress by the phase difference a is given by
e00 ¼ eAe
iðxrt�aÞ: ð7Þ
The complex modulus may be expressed by the ratio of the variable stress to the variable strain as follows:
E
 ¼ r00

e00
¼ rA

eA
eia: ð8Þ
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According to the Moivre theorem, we have
eia ¼ cos a þ i sina: ð9Þ

Thus
E
 ¼ rA

eA
ðcos a þ i sinaÞ; ð10Þ
where the dynamic and the loss modulus are
ER ¼ ReE
 ¼ rA

eA
cos a; EI ¼ ImE
 ¼ rA

eA
sin a: ð11Þ
Among the various types of steady variable stresses, cyclic stresses are the most important; besides, these

stresses are the most widely investigated. In addition, cyclic strain response does not depend much on the

shape of the time curve within the cycle.

The curve in Fig. 4, which describes the variation of stresses in time, may considerably differ in

appearance; variation of stresses in machine parts often follows the sinusoidal law
rðtÞ ¼ r0 þ rA sinðxrtÞ; ð12Þ

where xr is load or stress frequency. The maximum absolute stress in the cycle is denoted by rmax, while the

minimum is denoted by rmin. The ratio of minimum stress to maximum with the signs taken into account is

known as the cycle characteristic, or the coefficient of asymmetry of cycle
r ¼ rmin

rmax

: ð13Þ
The coefficient varies between )1 and +1. The half of the sum of maximum and minimum stresses of a cycle

(taking into consideration their signs) is known as the constant component of cycle, or mean cycle stress
r0 ¼
rmax þ rmin

2
¼ 1þ r

2
rmax: ð14Þ
The half of the difference of maximum and minimum stresses (also taking into consideration their signs) is
known as the variable component of cycle or the amplitude of stresses in the cycle
rA ¼ rmax � rmin

2
¼ 1� r

2
rmax: ð15Þ
The RDA equation due to sinusoidal stresses takes the form of
€eðtÞmþ _eðtÞcþ eðtÞk ¼ rA

k
EH

�
þ EK þ H 0

c
� x2

r

m
EH

�
sinðxrtÞ þ rA

c
EH

�
þ kK þ kN

c

�
xr cosðxrtÞ

þ r0

k
EH

�
þ EK þ H 0

c

�
� rY

EK

c
: ð16Þ
Fig. 4. Cyclic variation of stress.
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The solution for this second-order differential equation with constant coefficients is
eðtÞ ¼ eh þ eP; ð17Þ
where eh is the complementary solution and eP is the particular solution for the given equation
eP ¼ A sinðxrtÞ þ B cosðxrtÞ þ C; ð18Þ
where A, B and C are constants
A ¼ Prðk � mx2
rÞ þ Qrcxr

ðk � mx2
rÞ

2 þ ðcxrÞ2
; B ¼ Qrðk � mx2

rÞ � Prcxr

ðk � mx2
rÞ

2 þ ðcxrÞ2
; C ¼ r0

1

EH

�
þ 1

EK

þ 1

H 0

�
� rY

1

H 0 ; ð19Þ
where
Pr ¼ rA

k
EH

�
þ EK þ H 0

c

�
� rAx2

r

m
EH

; Qr ¼ rA

c
EH

�
þ kK þ kN

c

�
xr: ð20Þ
Strain under constant stress, taking into consideration delayed elastic or visco-elastic strain is
e0ðtÞ ¼ eh þ C ¼ ec ¼ r0

EH

þ r0

EK

1
�

� e�ðt=TKÞ
�
¼ r0

EHðt0Þ
ð1þ uÞ: ð21Þ
where creep coefficient is
uðtÞ ¼ eve
eel

¼ EHðt0Þ
EK

1
�

� e�ðt=TKÞ
�
: ð22Þ
Cyclic strain is given by
e00pðtÞ ¼ A sinðxrtÞ þ B cosðxrtÞ ð23Þ
or
e00pðtÞ ¼ eA sinðxrt � aÞ; ð24Þ
where cyclic strain amplitude and phase difference by which the strain lags behind the stress are
eA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P 2
r þ Q2

r

ðk � mx2
rÞ

2 þ ðcxrÞ2

s
; ð25Þ

tan a ¼ Prcxr � Qrðk � mx2
rÞ

Prðk � mx2
rÞ þ Qrcxr

: ð26Þ
When the structural member is loaded cyclically, the rheological behavior of the member must be char-

acterized by the dynamic time of retardation TD
K . Now, taking into account formula (22) we have RDA

visco-elastic modulus
ED
Kðt; t0Þ ¼

EHðt0Þ
uðtÞ 1

�
� e�ðt=TD

K
Þ
�
¼ EHðt0Þ

uðtÞ ; ð27Þ
where
e�ðt=TD
K
Þ � 0: ð28Þ
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Using Eqs. (25) and (26) we find rheological–dynamic (RDA) modulus as follows:
ER ¼ rA

Prðk � mx2
rÞ þ Qrcxr

P 2
r þ Q2

r

: ð29Þ
Substituting the dynamic time of retardation, TD
K ¼ 1=x in Eq. (29) we obtain the RDA modulus which

define the isochronous stress–strain relationship in the following form:
ERðt; t0Þ ¼
1þd2

EHðt0Þ
þ 1

ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

1þd2

E2
H
ðt0Þ

þ 1
ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

� �
2

EHðt0Þ
þ 1

ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

� � ; ð30Þ
where
d ¼ xr

x
¼ xrTD

K : ð31Þ
3. Proportional stress

3.1. Heat and work: determining the proportional stress

The study of the quantitative relationships between heat and other forms of energy is called thermo-

dynamics. In this paper we shall be concerned with the relation of thermal expansion work to fictitious heat

energy, taking the RDA into account.

For example, if we alternately subject an isolated steel bar (adiabatic process) to a large number of
tensions and compressions under the stress rmax ¼ rP (axial fatigue), we shall observe after a definite

number of such changes in stress some viscous flow of steel, the strain lags the stress, and this is range when

the fatigue appears.

When bar is stretched, the elastic potential energy is stored in the material (see Fig. 5). The work re-

quired to stretch or compress the bar does not depend on the weight of the bar. Consequently, gravity is not

involved in the measurement of elastic potential energy U1. Instead, the work required for the stretching or

compressing depends upon the elasticity of the model
U1 ¼
r2
P

2EH

Al0: ð32Þ
Consider a elliptical loop of the rheological–dynamical model shown in Fig. 5, where
r00ðtÞ ¼ c_e00pðtÞ ¼ cxreA cosðxrt � aÞ: ð33Þ
For a cyclic stress variation along the entire loop, the rate of release of visco-elastic energy is equal to the

area enclosed by the loop, i.e.
Wd;ve ¼ pcxre
2
A

J
M2

	 

: ð34Þ
The cyclic strain amplitude eA have already been explained by Mila�sinovi�c (2003), where RDA was used to

predict the fatigue limit
eA ¼ rA

EHðt0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u
Þ2 þ d2

1þ d2

s
; ð35Þ



Fig. 5. Elastic potential energy and hysteretic loop dissipation in terms of stress–strain diagram.
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where u
 is structural creep coefficient. TD
K ¼ 1=x and then the damping c (see Eq. (5)) is given by
c ¼ 2kTD
K ¼ cc: ð36Þ
Thus the rate of release of visco-elastic energy is given by
Wd;veðrÞ ¼ pk
1

E2
H

ð1� rÞ2

2
r2
P

ð1þ u
Þ2 þ d2

1þ d2
d: ð37Þ
The area of transfer of energy is cross-sectional area A, and the energy dissipation is given by
Ud ¼ AWd;ve: ð38Þ

In the special case, at u
 ! 0, we have elastic behavior and the rate of release of elastic energy from formula

(37) as follows:
Wd;EðrÞ ¼ pk
1

E2
H

ð1� rÞ2

2
r2
Pd: ð39Þ
It can easily be shown that the total potential energy of the system P ¼ U1 � W decreases as a temperature

of the system rise. When all elastic potential energy is converted through hysteretic loop dissipation, we

have
Ud ¼ U1 ð40Þ

and relative frequency deðrÞ for theoretical estimation of the fatigue life is
ð1þ u
Þ2 þ d2
eðrÞ

1þ d2
eðrÞ

deðrÞ ¼ U1

2E2
H

Apkð1� rÞ2r2
P

¼ l0EH

pkð1� rÞ2
: ð41Þ
As mentioned above, high cycle frequencies during the cycling adiabatic process cause significant tem-
perature rise in the isolated bar with both edges clamped, Fig. 6, and thermal expansion work WT, as

follows:



Fig. 6. Schematic representation of the bar in the fatigue test.
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WT ¼ EHðaTDT Þ2

2
Al0: ð42Þ
aT is a coefficient of linear thermal expansion, DT [�C] is the difference between the final temperature and

the original temperature of the bar and EH is Young’s modulus.

However, when all elastic potential energy is converted through hysteretic loop dissipation we also

have
Ud ¼ WT: ð43Þ

From Eq. (43) we may obtain difference between the final temperature and the original temperature of the

bar as follows:
DTve ¼
1

aT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

deðrÞ
1þ u
ð Þ2 þ d2

1þ d2
d

rP

EH

s
: ð44Þ
In the special case at u
 ! 0 (perfect elasticity), we have
DTE ¼ 1

aT

ffiffiffiffiffiffiffiffiffiffi
d

deðrÞ

s
rP

EH

; ð45Þ
where d ¼ d1N (N is the number of cycles) and rP is applied proportional stress. When it is fatigue reached,

d ¼ deðrÞ and thus
DTE ¼ 1

aT

rP

EH

: ð46Þ
The amount of the fictitious heat in an isothermal process which must be added to the metal rod to simulate

the observed temperature change is
Q ¼ mcDTE ¼ qAl0cDTE; ð47Þ

where c is specific heat of the metal. Hooke’s law states that within the limits of perfect elasticity, strain is

directly proportional to stress rP. Therefore we may state the first law of thermodynamics as follows: when

all elastic potential energy in an adiabatic fatigue process is converted through hysteretic loop dissipation

with temperature change to produce thermal expansion work, or when fictitious heat is added to the steel

rod to simulate the observed temperature change, there is no loss of energy. Thus
WT ¼ Q ¼ EHa2
TDT

2
E

2
Al0 ¼ qAl0cDTE ) DTE ¼ 2qc

EHa2
T

: ð48Þ
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Substituting DTE in Eq. (46), we obtain the proportional stress as reaction-stress of clamped metal rod as

follows:
rP ¼ 2qc
aT

: ð49Þ
The proportional strain is eP ¼ rP=EH.
3.2. Steel bar as prototype

The fatigue behavior of axially loaded steel bars has already been explained by Mila�sinovi�c (2003).

The specimen on which, the work was done was an isolated reinforced steel bar: l0 ¼ 50 cm, / ¼ 1:9
cm, c ¼ 0:113 kcal/(kgC), aT ¼ 0:0000125 1/�C, q ¼ 7860 kg/m3, EH ¼ 2:1� 105 MPa. The bar is
loaded with cyclic sinusoidal load in symmetrical cycle: r0 ¼ 0, rA ¼ rP ¼ 141 MPa and frequency,

f ¼ 20 Hz.

Elastic potential energy
U1 ¼
r2
P

2EH

Al0 ¼
1412

2 � 2:1� 105
0:0192p

4
0:5 ¼ 6:71 J:
When it is fatigue reached (see Mila�sinovi�c, 2003, Table 2 and Fig. 12) we have deðrÞ ¼ 70:167,
DTE ¼ 53:71 �C, and Wd;E ¼ 23667:78 J/m2. Thus

Energy dissipation
Ud ¼ Wd;EA ¼ 23667:78
0:0192p

4
¼ 6:71 J
Thermal expansion work
WT ¼ 2:1� 1011ð0:0000125 � 53:71Þ2

2

0:0192p
4

0:5 ¼ 6:71 J
Proportional stress as reaction-stress of clamped steel bar
rP ¼ 2qc
aT

¼ 2 � 7860 � 0:113
0:0000125

¼ 142108800 Pa ¼ 142 MPa
Reaction stress of clamped steel bar (rP ¼ 142 MPa) is in excellent accordance with applied proportional
stress (rA ¼ rP ¼ 141 MPa) from the axial fatigue experiment.
3.3. Metallic bars

Proportional stress of clamped steel bar in axial fatigue process (see Eq. (49)) is obtained using physical

characteristics of the metal only, like as: specific heat of the metal c, coefficient of linear thermal expansion

aT and mass density q.
For the other metallic bars proportional stresses are shown in Table 1. The values of physical charac-

teristics of metals: c, aT, q and EH are taken form the handbook of Modern Physics (Williams et al., 1968).



Table 1

Proportional stress of metallic bars

Aluminum Copper Brass Lead Steel prototype

c [kcal/kg �C] 0.124 0.0924 0.0917 0.0305 0.113

q [kg/m3] 2700 8930 8600 11310 7860

aT [1/�C] 0.0000238 0.0000168 0.0000193 0.0000294 0.0000125

rp [N/m2] 48 554 622 98 230 000 81 722 230 23 466 327 1.42E+08

EH [N/m2] 69 600 000 000 1.16E+11 90 200 000 000 15 700 000 000 2.1E+11

�p 0.000698 0.000847 0.000906 0.001495 0.000677
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4. Elasticity stress

4.1. Dimensional analysis and the RDA similitude

Dimensional analysis is the mathematics of dimensions of quantities and is another useful tool of

rheological–dynamical analogy. In an equation expressing a physical relationship between quantities,

absolute numerical and dimensional equality must exist.

The first equation of RDA (see Eq. (5)) is
m ¼ kKkN

c
;

where k is Trouton viscosity. Trouton viscosity is the extensional viscosity, then the yields the following

relation between shear viscosity g and extensional viscosity k of Newtonian liquids:
k ¼ 3g: ð50Þ
The last equality is known as Trouton’s formula. The product of the mass of a body and its velocity is called
momentum; m � v. Viscosity is transfer of momentum. Thus
k ¼ mv
A

; ð51Þ
where A is the area of transfer of momentum.

4.2. Some important numbers using the RDA

Dividing the product of viscosity from Eq. (51) by the product of viscosity from the RDA we get
mv
A

� �2
kKkN

¼
qAl0v
A

� �2
kKkN

¼ q2l20v
2

kKkN

: ð52Þ
The square root of this ratio
NRDA
R ¼ ql0vffiffiffiffiffiffiffiffiffiffiffi

kKkN

p ; ð53Þ
may be called the RDA Reynolds number. This number is known in fluid mechanics as
NR ¼ qvl0
g

: ð54Þ
Newton’s second law of motion can be expressed in several different ways. For example, if we use the first

RDA relationship, we get
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m ¼ kKkN

c
¼ kKkN

qa
) ma ¼ F ¼ kKkN

q
: ð55Þ
The stress is the ratio of the internal force F to the cross-section area A. Thus
r ¼ F
A
¼ kKkN

Aq
¼ q2l20v

2

Aq
¼ ql20v

2

A
: ð56Þ
Dividing the previous equation by stress r we get RDA Euler number
NRDA
E ¼ ql20v

2

rA
: ð57Þ
This number is known in fluid mechanics as
NE ¼ qv2

p
; ð58Þ
where p is pressure. The elastic force FE required to stretch a Hooke’s spring is given by the formula
FE ¼ kDl; ð59Þ

where k is the axial stiffness
k ¼ EHA
l0

: ð60Þ
Dividing the internal force F by the elastic force FE we get RDA Cauchy number
NRDA
C ¼ ql20v

2

EHA
l0

Dl
¼ qv2

EH

l30
ADl

: ð61Þ
This number is known in fluid mechanics as
NC ¼ qv2

EH

: ð62Þ
The square root of this number is known as the Mach number
NM ¼ vffiffiffiffiffi
EH

q

q : ð63Þ
Dividing the internal force F by the gravitational force F ¼ mg ¼ qAl0g we get
ql20v
2

qAl0g
¼ v2

g
l0
A
: ð64Þ
The square root of this ratio
NRDA
F ¼ v

ffiffiffiffiffiffi
l0
gA

s
; ð65Þ
may be called the RDA Froude number. This number is known in fluid mechanics as
NF ¼ vffiffiffiffiffiffiffi
l0g

p : ð66Þ
In general, an engineer is concerned with the effect of the dominant force. In most rheological problem,

gravity, viscosity, elasticity and plasticity govern predominantly, but not necessarily simultaneously.
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4.3. Determining the elasticity stress of metallic bars

Crystalline materials like metals consist of a very large number of extremely small crystals. Each of these

is a system of atoms arranged very close to each other in regular rows. These rows form the so-called
crystalline lattice. The deformation of bodies takes place due to a change in the location of atoms, i.e. due

to their getting closer or farther. Elastic deformation disappears when the force causing the deformation is

removed; in this case, the body completely regains its initial shape and dimensions. This deformation occurs

due to elastic distortion in the crystalline lattice. It has been experimentally observed that the elastic

deformation continues till the forces being applied do not exceed a certain limit. Elasticity compressive

stress of two-hinged bar is defined by Euler’s formula
rE ¼ EHp2

l0
kz

� �2

E

; ð67Þ
where ðl0=kzÞE ¼ k

E is slenderness ratio at the point of elasticity, E. In this way the elasticity stress also

becomes dependent upon the dimensions of the bar (its length and diameter) and thus is no more a physical

characteristics of the material only.

Euler’s formula for critical force of bar under compression was obtained by integrating the differential

equation of the deflected axis, i.e. it was derived on the assumption that the stresses in the bar are less than

the limit of elasticity when it loses its stability. Consequently, we cannot use the critical stresses calculated

by Euler’s formula if they exceed the limit of elasticity of the given material. Generally, the stress–strain

curve is linear elastic until r6 rE and nonlinear with considerable visco-elasto-plastic strain, under stress

rP rE.

4.3.1. Steel bar as prototype

Axial fatigue experiment was performed on the isolated reinforced steel bar: l0 ¼ 50 cm, / ¼ 1:9 cm,
EH ¼ 2:1� 105 MPa where
Iz ¼
/4p
64

; A ¼ /2p
4

; kz ¼
ffiffiffiffi
Iz
A

r
¼ /

4
¼ 1:9

4
¼ 0:475;

l0
kz

� �
E

¼ 4 � 50
1:9

¼ 105:26;

rE ¼ 210000p2

105:262
¼ 187 MPa; eE ¼ rE

EH

¼ 187

210000
¼ 0:000891:
As indicated in Mila�sinovi�c (2000), is the fact that point of elasticity (E) of this steel is in good accordance

with slenderness ratio of 105.26, because elastic Euler’s theory for this type of low-carbon steel (Fe E275:

rY ¼ 275 N/mm2; rC ¼ 390 N/mm2, according to prEN 10113) is not valid for slenderness ratio under the

104.

4.3.2. Metallic bars as true models

Rheological–dynamical models, in general may be either true models or distorted models. True models

have all the significant characteristics of the prototype. Assuming the RDA similitude of metallic bars we
can determine the elasticity stress (see Table 2), taking into account the RDA Euler number. Let us cal-

culate the RDA Euler number using the velocity of the particles v ¼ r=
p
EHq,
NRDA
E ¼ ql20v

2

rA
¼ ql20

rA
r2

EHq
¼ l20r

EHA
: ð68Þ
At the point of proportionality, P , RDA similitude of metallic bars with the same cross-section area, A is

expressed by the formula



Table 2

Elasticity stress of metallic bars

Aluminum Copper Brass Lead Steel prototype

�p 0.000698 0.000847 0.000906 0.001495 0.000677

EH [N/m2] 69 600 000 000 1.16E+11 90 200 000 000 15 700 000 000 2.1E+11

l0 [cm] 49.24 44.70 43.22 33.647 50

l0=k2 103.67 94.11 90.99 70.84 105.26

rE [N/m2] 63 917 966 1 29 270 577 1 07 520 933 30 881 553 187 000 000

eE 0.00091836 0.0011144 0.0011920 0.00196698 0.000891

Table

Structu

c [kg

l0 [c

u


epe
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NRDA
E ¼ l20

A
rP

EH

¼ l20
A

eP )
l20;pr
A

eP ;pr ¼
l20;tm
A

eP ;tm ) l0;tm ¼ l0 pr

ffiffiffiffiffiffiffiffiffi
eP ;pr
eP ;tm

r
: ð69Þ
4.4. Determining the structural (visco-elastic) creep coefficient of metallic bars

The deviation from perfect elasticity of the deformational response to applied force in continuous,

homogeneous, isotropic solids may be attributed to dissipation of mechanical energy through quasi-viscous

flow or creep of quasi-fluid components produces the visco-elastic response.

The creep coefficient is defined as the ratio of the visco-elastic strain of metallic bar to the elastic strain.

Therefore, it may be determined using RDA similitude between Euler’s and RDA elasticity stress.

Putting the Euler’s elasticity stress into the expression of the RDA Euler number, we get
NRDA
E ¼ l20

A
rE

EH

¼ l20
/2p
4

1

EH

EHp2

4l0
/

� �2
¼ p

4
: ð70Þ
RDA expression of the elasticity stress is given by Mila�sinovi�c (2000)
rRDA
E ¼ EH

l0
kz

k3z
Iz

1
cu


; ð71Þ
where k3z =Iz ¼ 1=/p. Now, we have RDA Euler number as follows:
NRDA
E ¼ l20

A
rRDA
E

EH

¼ l20
/2p
4

1

EH

EHcu


4l0
/

1
/p

¼ l0cu
: ð72Þ
Comparing two expressions for the RDA Euler’s numbers, we get the following structural creep coef-

ficient:
p
4
¼ l0cu
 ) u
 ¼ p

4l0c
: ð73Þ
3

ral (visco-elastic) creep coefficient of metallic bars

Aluminum Copper Brass Lead Steel prototype

/cm3] 2.70· 10�3 8.93· 10�3 8.60· 10�3 11.31· 10�3 7.86· 10�3

m] 49.24 44.70 43.22 33.647 50

5.907559 1.9657373 2.113035 2.063863 1.998469

0.005425 0.002193 0.002519 0.004059 0.00178
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The values of structural creep coefficient for the metallic bars are listed in Table 3. According to the

definition of the creep coefficient we obtain visco-elastic strain as follows:
eve ¼ u
eE: ð74Þ
5. Visco-elastic–plastic range

5.1. The RDA modulus

If the external force exceeds the elasticity limit E, the body fails to regain completely its initial shape and

size after the force is removed; the difference in size which thus remains is called the plastic (residual)

deformation. In crystalline materials, this deformation is caused by the irreversible displacement of one

layer of crystalline lattice with respect to the other. After the removal of external forces the displaced layers
of atoms retain their position.

Real part of complex modulus (see Eq. (30)) is a measure of the energy dissipation of mechanical energy

through visco-elasto-plastic flow
ERðt; t0Þ ¼
1þd2

EHðt0Þ
þ 1

ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

1þd2

E2
H
ðt0Þ

þ 1
ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

� �
2

EHðt0Þ
þ 1

ED
K
ðt;t0Þ

þ 1
H 0Dðt;t0Þ

� � :
In the special case, when d ! 0, we have static loading and RDA modulus as follows:
ER ¼ 1

1
EH

þ 1
EK

þ 1
H 0

� � : ð75Þ
As started earlier, in the stage of low loading the majority of materials are in the range of visco-elasticity

(H 0 ! 1) with RDA modulus
ER ¼ 1

1
EH

þ 1
EK

� � ; ð76Þ
where EK, (see Eq. (27)) is
EK ¼ EH

u
 : ð77Þ
For a computed first value of ER we can determine the appropriate first slope of the plastic strain
H 0ðepÞ ¼
dr
dep

¼ dr
de � deE

¼ ER

1� ER

EH

: ð78Þ
After reaching the yield stress rY, deformation process transits to the visco-elastic–plastic range with RDA
modulus expressing by Eq. (75) which can be determined using by H 0 expressing by Eq. (78). We are

concerned here with calculations of ER and H 0 that are systematically repeated.
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5.2. Stress levels for visco-elastic–plastic yielding

The first value of RDA modulus ER is
Eð1Þ
R ¼ 1

1
EH

þ 1
EK

� � ¼ 1
1
EH

þ u


EH

¼ EH

1þ u
 : ð79Þ
The first modulus ratio is
uð1Þ
Y ¼ EH

Eð1Þ
R

¼ eð1ÞY

eP
¼ 1þ u
; ð80Þ
where eð1ÞY is the first total strain
eð1ÞY ¼ ð1þ u
ÞeP: ð81Þ
eP ¼ rP=EH is the proportional strain. The value of yield stress rY my be obtained also by using the RDA
rY ¼ rRDA
Y ¼ EH

l0
kz

k3z
Iz

1

cuð1Þ
Y

¼ rE

uð1Þ
Y

u
 ¼ rE

1þ u


u
 : ð82Þ
The relationship u
ðlÞ (see Eq. (83)) which has already been formulated by Mila�sinovi�c (2003), now gives a

new dependence of yield stress on the Poisson’s ratio (see Fig. 7).
u
 ¼
1

1�0:001�l

� �4

� 1

	 

1

2�0:001

1� 1
1�0:001�l

� �4

� 1

	 

1

2�0:001

: ð83Þ
The magnitude of the yield stress depend upon the magnitudes of elasticity stress and of Poisson’s ratio.

The assumption of incompressibility (l ¼ 0:5) means that rY and rE are equal.
Fig. 7. Dependence of yield stress on the Poisson’s ratio.
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The appropriate (first) slope of the plastic strain is
H 0ð1Þ ¼ Eð1Þ
R

1� Eð1Þ
R

EH

¼
EH

ð1þu
Þ

1� 1
ð1þu
Þ

¼ EH

u
 : ð84Þ
A lower yield point can be obtained from the yield condition of the RDA, which is based on the assumption
of plasticity
Y ð1Þ
p ¼ YL ¼ rY þ H 0ð1Þeð1Þp ; ð85Þ
where eð1Þp is the first plastic strain
eð1Þp ¼
eð1Þvp

uð1Þ
Y

¼
eð1Þvp

1þ u
 : ð86Þ
The strain eð1Þvp the is the first visco-plastic strain, which may be obtained from the first total strain as follows:
eð1Þvp ¼ eð1ÞY � eE � eve ¼ ð1þ u
ÞeP � ð1þ u
ÞeE ¼ ð1þ u
ÞðeP � eEÞ: ð87Þ
Consequently,
Y ð1Þ
p ¼ YL ¼ rY þ EH

u
 ðeP � eEÞ: ð88Þ
In ductile materials like metals the elastic strain eE is greater than the proportional strain eP and this is range

when material instability due to the transition from an upper to a lower yield point appears.

The rate of convergence of stresses Yp for this iterative procedure depends upon the physical charac-

teristics of metals and dimensions of the bars. The procedure of determining the another stress levels for

plastic yielding 1 < i > n continues until the magnitude of the error of the stress level becomes lesser than

some previously assigned value
EðiÞ
R ¼ 1

1
EH

þ 1
EK

þ 1
H 0ði�1Þ

� � ¼ 1
1
EH

þ u


EH
þ ði�1Þu


EH

¼ EH

1þ iu
 ;

uðiÞ
Y ¼ EH

EðiÞ
R

¼ eðiÞY
eP

¼ 1þ iu
;

eðiÞY ¼ ð1þ iu
ÞeP;

H 0ðiÞ ¼ EðiÞ
R

1� EðiÞ
R

EH

¼
EH

ð1þiu
Þ

1� 1
ð1þiu
Þ

¼ EH

iu
 ;

eðiÞvp ¼ eðiÞY � eE � eve ¼ ð1þ iu
ÞeP � ð1þ u
ÞeE;

eðiÞp ¼
eðiÞvp

uðiÞ
Y

¼ eP �
1þ u


1þ iu
 eE;

Y ðiÞ
p ¼ rY þ H 0ðiÞeðiÞp ¼ rY þ EH

iu
 eP

�
� 1þ u


1þ iu
 eE

�
:

ð89Þ
5.2.1. Steel bar as prototype

Structural creep coefficient of tested reinforced steel bar has already been formulated by Mila�sinovi�c
(2003) as follows:
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u
 ¼
1

1�0:001�0:333
� �4 � 1
h i

1
2�0:001

1� 1
1�0:001�0:333

� �4 � 1
h i

1
2�0:001

¼ 2;
where l ¼ 0:333 is Poisson’s ratio. On the other hand if we use Eq. (73), we have the same value
u
 ¼ p
4l0c

¼ p
4 � 50 � 7:86� 10�3

¼ 2:
Using the procedure outlined in Section 5.2, the yield stress rY and a lower yield stress YL may be calculated

from the first iteration
Eð1Þ
R ¼ EH

1þ u
 ¼
EH

3
;

uð1Þ
Y ¼ 1þ u
 ¼ 3;

eð1ÞY ¼ ð1þ u
Þ � eP ¼ 3 � 0:000677 ¼ 0:002029;

rRDA
Y ¼ EH

l0
kz
� k3zIz �

1

c�uð1Þ
Y

¼ 210000 � 7:86� 10�3 � 3
105:26 � 0:1675315 ¼ 280:66 MPa;

eð1Þvp ¼ ð1þ u
Þ � ðeP � eEÞ ¼ 3 � ðeP � eEÞ;

eð1Þp ¼
eð1Þvp

1þ u
 ¼ eP � eE ¼ 0:000677� 0:000891;

H 0ð1Þ ¼ EH

u
 ¼ EH

2
;

YL ¼ rY þ H 0ð1Þ � eð1Þp ¼ 280:66þ 210000

2
� ð0:000677� 0:000891Þ ¼ 258:17 MPa:
The results of the next iterations are presented in Table 4. The low-carbon steel Fe E275 and order metals

from Table 4 belong to the group of ductile materials. After the considerable residual strains the conver-
gences of stress levels are finished, as shown in Fig. 8.

5.2.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars (see Section 4.4) we obtain the table (Table 4) of the total

strains and the stress levels for visco-elastic–plastic yielding.

The resulted of total stains and stress levels for visco-elastic–plastic yielding of metallic bars in form of

isochronous stress–strain diagrams are shown in Fig. 8.
6. Visco-plastic range

6.1. Stress levels for strain hardening branch

If we wish to take into account the effect of visco-plastic strain to the stress level, two different proce-

dures are presented in the literature. One procedure is used to approximate the behavior by mechanical



Table 4

Total strains and stress levels for visco-elastic–plastic yielding of metallic bars

Aluminum Copper Brass Lead Steel prototype

EH [N/m2] 69 600 000 000 1.16E+11 90 200 000 000 15 700 000 000 2.1E+11

u
 5.907559 1.967873 2.113035 2.063863 1.998469

eð1ÞY 0.004819 0.002513 0.00282 0.004579 0.002029

rRDA
Y [MPa] 74.74 194.97 158.42 45.84 280.66

Y ð1Þ
p ¼ YL 72.14 179.20 146.20 42.25 258.17

eð2ÞY 0.00894 0.004179 0.004735 0.007664 0.003381

Y ð2Þ
p 75.93 200.18 162. 60 47.06 288.13

eð3ÞY 0.013061 0.005845 0.006649 0.010749 0.004734

Y ð3Þ
p ¼ YU 76.15 202.20 164.11 47.51 290.99

eð4ÞY 0.017183 0.007511 0.008564 0.013834 0.006086

Y ð4Þ
p 76.04 201.96 163.89 47.45 290.64

eð5ÞY 0.021304 0.009178 0.010478 0.016919 0.007439

Y ð5Þ
p 75.89 201.36 163.41 47.31 289.78

eð6ÞY 0.025425 0.010844 0.012393 0.020003 0.008791

Y ð6Þ
p 75.77 200.76 162.93 47.17 288.91

eð7ÞY 0.029546 0.01251 0.014307 0.023088 0.010143

Y ð7Þ
p 75.66 200.22 162.51 47.04 288.14

eð8ÞY 0.033668 0.014176 0.016221 0.026173 0.011496

Y ð8Þ
p 75.57 199.76 162.14 46.94 287.48

eð9ÞY 0.037789 0.015842 0.018136 0.029258 0.012848

Y ð9Þ
p 75.50 199.36 161.83 46.84 286.92

eð10ÞY 0.04191 0.017508 0.02005 0.032343 0.014201

Y ð10Þ
p 75.44 199.02 161.57 46.77 286.43

eð11ÞY 0.046031 0.019175 0.021965 0.035427 0.015553

Y ð11Þ
p 75.38 198.73 161.34 46.70 286.01

eð12ÞY 0.050153 0.020841 0.023879 0.038512 0.016905

Y ð12Þ
p 75.34 198.48 161.14 46.64 285.65

eð13ÞY 0.054274 0.022507 0.025794 0.041597 0.018258

Y ð13Þ
p 75.30 198.25 160.96 46.59 285.33

Fig. 8. Average RDA stress–strain diagrams of metallic bars in visco-elastic–plastic range according to the RDA similitude.

4618 D.D. Mila�sinovi�c / International Journal of Solids and Structures 41 (2004) 4599–4634



D.D. Mila�sinovi�c / International Journal of Solids and Structures 41 (2004) 4599–4634 4619
models. The two most widely used rules are Time Hardening Rule and the Strain Hardening Rule in which

the problem is that of predicting the creep curve for stress increase.

The present paper represents an attempt to interpret the complex phenomena, with the strain hardening

branch, occurring in the tensile response of metal bars through a simple previously mentioned RDA
procedure. Using the procedure outlined in Section 5.2, the stress level for strain hardening branch Yvp can
be obtained from the yield condition as follows:
Yvp ¼ rY þ H 0evp: ð90Þ

For a computed value of the first RDA modulus Eð1Þ

R , the appropriate first stress level for strain hardening

branch Y ð1Þ
vp may be calculated and then a new RDA modulus. The procedure of determining another stress

levels for 1 < j >m continues until the magnitude of the error of the stress level becomes lesser than some
previously assigned value
Eð1Þ
R ¼ 1

1
EH

þ 1
EK

þ 1
H 0

� � ¼ 1
1
EH

þ u


EH
þ u


EH

¼ EH

1þ 2u
 ;

uð1Þ
Y ¼ EH

Eð1Þ
R

¼ 1þ 2u
;

eð1ÞY ¼ uð1Þ
Y eP ¼ ð1þ 2u
ÞeP;

eð1Þvp ¼ ð1þ 2u
ÞeP � ð1þ u
ÞeE;

H 0ð1Þ ¼ Eð1Þ
R

1� Eð1Þ
R

EH

¼
1

ð1þ2u
ÞEH

1� 1
ð1þ2u
Þ

¼ EH

2u
 ;

Y ð1Þ
vp ¼ rY þ H 0ð1Þeð1Þvp ¼ rY þ EH

2u
 ð1½ þ 2u
ÞeP � ð1þ u
ÞeE�:

ð91Þ
The jth iteration
EðjÞ
R ¼ 1

1
EH

þ 1
EK

þ 1
H 0ðj�1Þ

� � ¼ 1
1
EH

þ u


EH
þ ju


EH

¼ EH

1þ ðjþ 1Þu
 ;

uðjÞ
Y ¼ EH

EðjÞ
R

¼ 1þ ðjþ 1Þu
;

eðjÞY ¼ uðjÞ
Y eP ¼ ½1þ ðjþ 1Þu
�eP;

eðjÞvp ¼ ½1þ ðjþ 1Þu
�eP � ð1þ u
ÞeE;

H 0ðjÞ ¼ EðjÞ
R

1� EðjÞ
R

EH

¼
1

1þðjþ1Þu
 EH

1� 1
1þðjþ1Þu


¼ EH

ðjþ 1Þu
 ;

Y ðjÞ
vp ¼ rY þ H 0ðjÞeðjÞvp ¼ rY þ EH

ðjþ 1Þu
 f½1þ ðjþ 1Þu
�eP � ð1þ u
ÞeEg:

ð92Þ
6.1.1. Steel bar as prototype
Eð1Þ
R ¼ EH

1þ 2 � u
 ¼
EH

5
;

uð1Þ
Y ¼ ð1þ 2 � u
Þ ¼ 5;

eð1ÞY ¼ ð1þ 2 � u
Þ � eP ¼ 5 � eP;



Table

Stress

Yupð1
Yupð2
Yupð3
Yupð4
Yupð5
Yupð6
Yupð7
Yupð8
Yupð9
Yupð1
Yupð1
Yupð1
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eð1Þvp ¼ ð1þ 2 � u
Þ � eP � ð1þ u
Þ � eE ¼ 5 � 0:000677� 3 � 0:000891 ¼ 0:000707;

H 0ð1Þ ¼ EH

2 � u
 ¼
EH

4
;

Y ð1Þ
vp ¼ rY þ H 0ð1Þ � eð1Þvp ¼ 280:66þ 210000

4
� 0:000707 ¼ 317:99 MPa:
The results of the next iterations are listed in Table 5. The stress Yvp ¼ 406:64 MPa at last iteration is in

good accordance with value of fracture stress (rC ¼ 390 MPa), recommended in prEN 10113: for steel Fe

E275.

6.1.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars we obtain the table (Table 5) of the stress levels for strain
hardening branch. After reaching ultimate residual strains the convergences of stress levels are finished, thus

indicating a well-defined RDA fracture stresses as shown in Fig. 9.

6.2. Total strain for strain hardening branch

In the initial stages of the tensile test, the cross-sectional area A of the bar almost remains constant, but

beginning from the strain hardening branch stress a noticeable reduction takes place, which is initially

uniform over the entire length of the specimen, and after crossing the strain hardening branch period it

becomes localized. However, once the neck is formed, the relative elongation also becomes dependent upon

the dimensions of the bar (its length and diameter) and thus is no more a characteristics of the material only.

As mentioned above the total strain in the visco-elasto-plastic range is
eðiÞY ¼ uðiÞ
Y eP: ð93Þ
Knowing the last value eðnÞY , we can calculate the change in the value of extension of the bar under tension

for strain hardening branch as
e
ðjÞY ¼ eðnÞY þ A
Ared

eðjÞY : ð94Þ
Ared is localized reduction of cross-section area in the narrowest part of the neck.
5

levels for strain hardening branch of metallic bars

Aluminum Copper Brass Lead Steel prototype

Þ 90.04 220.68 180.27 52.07 317.99

Þ 101.12 244.86 200.23 57.82 352.92

Þ 106.67 256.94 210.20 60.69 370.38

Þ 109.99 264.20 216.19 62.41 380.86

Þ 112.21 269.03 220.18 63.56 387.84

Þ 113.79 272.43 223.03 64.38 392.83

Þ 114.98 275.07 226.17 65.00 396.57

Þ 115.90 277.09 228.83 65.48 399.49

Þ 116.64 278.70 223.16 65.86 401.81

0Þ 117.25 280.02 229.25 66.17 403.72

1Þ 117.75 281.12 230.16 66.44 405.31

2Þ 118.18 282.05 230.93 66.66 406.65



Fig. 9. Overall stress–strain diagrams for metallic bars according to the RDA similitude.
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Previously, the author (Mila�sinovi�c, 2003) has underscored the need to introduce a distinction between

an ‘original’ and a ‘localized reduction’ cross-section area, considering the fatigue problem of metallic thin

long symmetrical bars. The cross-section area in the narrowest part of the neck may be obtained by

applying Bernoulli’s energy theorem, taking into account the minimum strain rate creep rP=kK of material
r1 þ
1

2
qA
l0 _e21

1

l0
¼ r2 þ

1

2
qA
l0 _e22

1

l0
¼ r2 þ

1

2
qA
 A

Ared

� �2

_e21; ð95Þ
where r1 ¼ rP is applied proportional stress, _e1 ¼ r1ffiffiffiffiffiffi
EHq

p u


l0
is initial strain rate, A
 ¼ 1 is a unit cross-sectional

area and r2 ¼ rP=ð1þ u
Þ is the RDA fatigue limit in symmetrical cycle. Thus
A
Ared

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHl20
rPu


1

1þ u
 þ 1

s
: ð96Þ
6.2.1. Steel bar as prototype

Proportional stress as reaction-stress of clamped steel bar is rP ¼ 142 MPa (see Section 3.2). Thus
A
Ared

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2:1� 105 � 0:52

142 � 2 � 1

1þ 2
þ 1

r
¼ 11:15
and
e
ðjÞY ¼ eð12ÞY þ A
Ared

� eðiÞY ¼ eð12ÞY þ 11:15 � eðjÞY :
We then obtain
eð1ÞY ¼ ð1þ 2 � u
Þ ¼ 5 � eP;

e
ð1ÞY ¼ 0:018258þ 11:15 � 5 � 0:000677 ¼ 0:056001:



Table 6

Total strains for strain hardening branch of metallic bars

Aluminum Copper Brass Lead Steel prototype

EH [N/m2] 69 600 000 000 1.16E+11 90 200 000 000 157 000 000 000 2.1E+11

u
 5.907559 1.967573 2.113035 2.063863 1.998469

l0 [cm] 49.24 44.70 43.22 33.647 50

rp [MPa] 48.554622 98.23 81.72228 23.466327 142.00

A=Ared 4.246626 9.04552 79.80394 4.995701 11.15333

e
ð1ÞY [%] 9.2239 6.0309 6.358 79 885 5.5973

e
ð2ÞY 10.9741 7.5381 7.8858 9.5296 7.1056

e
ð3ÞY 12.72423 9.045202 9.413611 11.07068 8.613975

e
ð4ÞY 14.4744 10.5523 10.9414 12.6118 10.1223

e
ð5ÞY 16.2245 12.0595 12.4692 14.1528 11.6307

e
ð6ÞY 17.9747 13.5666 13.997 15.6939 13.139

e
ð7ÞY 19.7248 15.07372 15.53479 17.23497 14.6474

e
ð8ÞY 21.4749 16.5809 17.0526 18.776 16.1558

e
ð9ÞY 23.2251 18.088 18.5804 20.3171 17.6641

e
ð10ÞY 24.97522 19.59511 20.10317 21.85818 19.17246

e
ð11ÞY 26.7254 21.1022 21.636 23.3993 20.6803

e
ð12ÞY 28.4755 22.6094 23.1638 24.9403 22.1892

4622 D.D. Mila�sinovi�c / International Journal of Solids and Structures 41 (2004) 4599–4634
The results of the next iterations are listed in Table 6.

6.2.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars we obtain the table (Table 6) of the total strains for strain

hardening branch.
After secondary creep range the material again starts resisting further tensile strain and to elongate it by

a length Dl the force should be increased.
7. Numerical test

The computational efficiency of the algorithm described in the previous sections was verified to the

example, the results of which are known in literature (Froli and Royer-Carfagni, 2000). In the order to

simulate experimental results, they refer to the test reported in their paper, where the specimen presented

approximately

• Diameter of the bar / ¼ 1:6 cm

• Young’s modulus EH ¼ 2� 105 MPa

• Upper yield stress YU ¼ 390 MPa
• Lower yield point YL ¼ 358 MPa

The yield stress YL ¼ 358 MPa is in good accordance with yield value of mild-steel Fe E355 recom-

mended in prEN 10113: (rY ¼ 355 N/mm2).

7.1. RDA results

7.1.1. Proportional stress

The values of physical parameters of mild-steel: c, aT, q and EH are taken from the handbook of Modern

Physics (Williams et al., 1968); specific heat [kcal/kg �C]: 0.1395; density [kg/m3]: 7850; coefficient of linear
expansion [1/�C]: 0.0000105; elastic modulus [N/m2]: 2 · 1011
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rP ¼ 2 � q � c
aT

¼ 2 � 7850 � 0:1395
0:0000105

¼ 2:0859� 108 N=m
2 ¼ 208:59 MPa;

eP ¼ rP

EH

¼ 208:59� 106

2� 1011
¼ 0:001043:
7.1.2. Elasticity stress

Assuming the RDA similitude of metallic bars (prototype: l0 ¼ 50 cm, A ¼ 1:92 � p=4 ¼ 2:835 cm2,

eP ¼ 0:000677; true model: A ¼ 1:62 � p=4 ¼ 2:01 cm2, eP ¼ 0:001043) we may determine the elasticity

stress taking into account the RDA Euler number.
l0;tm ¼ l0;pr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Atm

Apr

� eP ;pr
eP ;tm

s
¼ 50 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:01

2:835
� 0:000677
0:001043

r
¼ 33:92 cm;

kz ¼
ffiffiffiffi
Iz
A

r
¼ /

4
¼ 1:6

4
¼ 0:4 cm;

l0
kz

� �
E

¼ 33:92

0:4
¼ 84:8;

k3z
Iz

¼ 1

/ � p ¼ 1

1:6 � p ¼ 0:19894:1=cm:
Is the fact that point of elasticity, E of steel is in good accordance with slenderness ratio of 84.8, because
elastic Euler’s theory for this type of low-carbon steel (Fe E355 recommended in prEN 10113:) is not valid

for slenderness ratio under the 85.
rE ¼ EH � p2

l0
kz

� �2

E

¼ 2� 105 � p2

84:82
¼ 274:5 MPa;

eE ¼ rE

EH

¼ 274:5� 106

2� 1011
¼ 0:001372:
7.1.3. Structural (visco-elastic) creep coefficient
u
 ¼ p
4 � l0 � c

¼ p
4 � 33:92 � 7:85� 10�3

¼ 2:95
7.1.4. Stress levels for plastic yielding

The first iteration (yield stress and lower yield point)
Eð1Þ
R ¼ EH

1þ u
 ¼
EH

3:95
;

uð1Þ
Y ¼ 1þ u
 ¼ 3:95;

eð1ÞY ¼ ð1þ u
Þ � eP ¼ 3:95 � 0:001043 ¼ 0:00412;

rRDA
Y ¼ EH

l0
kz
� k3zIz �

1

c�uð1Þ
Y

¼ 200000 � 7:85� 10�3 � 3:95
84:8 � 0:19894 ¼ 367:57 MPa;

eð1Þvp ¼ ð1þ u
Þ � ðeP � eEÞ ¼ 3:95 � ðeP � eEÞ;
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eð1Þp ¼ eP � eE ¼ 0:001043� 0:001372;

H 0ð1Þ ¼ EH

u
 ¼ EH

2:95
;

Y ð1Þ
L ¼ rY þ H 0ð1Þ � eð1Þp ¼ 367:57þ 200000

2:95
� ð0:001043� 0:001372Þ ¼ 345:23 MPa:
Second iteration
Eð2Þ
R ¼ EH

1þ 2 � u
 ¼
EH

6:9
;

uð2Þ
Y ¼ 1þ 2 � u
 ¼ 6:9;

eð2ÞY ¼ ð1þ 2 � u
Þ � eP ¼ 6:9 � 0:001043 ¼ 0:0072;

eð2Þvp ¼ ð1þ 2 � u
Þ � eP � ð1þ u
Þ � eE ¼ 6:9 � eP � 3:95 � eE;

eð2Þp ¼ eP �
1þ u


1þ 2 � u
 � eE ¼ 0:001043� 3:95

6:9
� 0:001372;

H 0ð2Þ ¼ EH

2 � u
 ¼
EH

5:9
;

Y ð2Þ
p ¼ rY þ H 0ð2Þ � eð2Þp ¼ 367:57þ 200000

5:9
� 0:001043

�
� 3:95

6:9
� 0:001372

�
¼ 376:29 MPa:
The third iteration (upper yield point)
Eð3Þ
R ¼ EH

1þ 3 � u
 ¼
EH

9:85
;

uð3Þ
Y ¼ 1þ 3 � u
 ¼ 9:85;

eð3ÞY ¼ ð1þ 3 � u
Þ � eP ¼ 9:85 � 0:001043 ¼ 0:01027;

eð3Þvp ¼ ð1þ 3 � u
Þ � eP � ð1þ u
Þ � eE ¼ 9:85 � eP � 3:95 � eE;

eð3Þp ¼ eP �
1þ u


1þ 3 � u
 � eE ¼ 0:001043� 3:95

9:85
� 0:001372;

H 0ð3Þ ¼ EH

3 � u
 ¼
EH

8:85
;

Y ð3Þ
U ¼ rY þ H 0ð3Þ � eð3Þp ¼ 367:57þ 200000

8:85
� 0:001043� 3:95

9:85
� 0:001372

� �
¼ 378:71 MPa;

..

.

Eð13Þ
R ¼ EH

1þ 13 � u
 ¼
EH

39:35
;

uð13Þ
Y ¼ 1þ 13 � u
 ¼ 39:35;
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eð13ÞY ¼ ð1þ 13 � u
Þ � eP ¼ 39:35 � 0:001043 ¼ 0:04104;

eð13Þvp ¼ ð1þ 13 � u
Þ � eP � ð1þ u
Þ � eE ¼ 39:35 � eP � 3:95 � eE;

eð13Þp ¼ eP �
1þ u


1þ 13 � u
 � eE ¼ 0:001043� 3:95

39:35
� 0:001372;

H 0ð13Þ ¼ EH

13 � u
 ¼
EH

38:35
;

Y ð13Þ ¼ rY þ H 0ð13Þ � eð13Þp ¼ 367:57þ 200000

38:35
� 0:001043

�
� 3:95

39:35
� 0:001372

�
¼ 372:3 MPa:
It will be noted from the curve in Fig. 10 that the proposed RDA provides the isochronous stress–strain

diagram for visco-elastic–plastic yielding of steel bar tested by Froli and Royer-Carfagni (2000) which is

similar to the mild-steel Fe E355 recommended in prEN 10113: (rY ¼ 355 N/mm2).
7.2. Comparison between RDA model and uniform chain-bar model

An assemblage of 50 long and 53 short elementary units, in which the short units have approximately the

same length as the strain gauges used in Froli and Royer-Carfagni (1999) has been calibrated by applying

their model.

The response of the composite system when its extremities (as in the experiment) are displaced apart at a

velocity of dDl=dt ¼ 2 mm/min was analyzed using an Ansys finite element code. Fig. 11 shows the mean

reaction-stress of the clamped edge as a function of the average strain Dl=l0.
8. RDA loading functions for Hencky’s total-strain theory

8.1. Octahedral shearing stress–octahedral shearing strain loading function

The material properties generally used in the inelastic analysis of load-carrying members are obtained

from tension and compression specimens in whom the state of stress is uniaxial. If the state of stress in the
load-carrying member is also uniaxial, the relation between stress and strain at any point in the member is
Fig. 10. Average isochronous RDA stress–strain diagram of steel bar tested by Froli and Royer-Carfagni (2000).



Fig. 11. Comparison between RDA model and uniform chain-bar model (Froli and Royer-Carfagni, 2000) solutions.

Fig. 12. Overall isochronous RDA stress–strain diagram of steel bar tested by Froli and Royer-Carfagni (2000).
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identical with that obtained from tension and compression tests. If the state of stress in the load-carrying

member is biaxial or triaxial, no simple stress–strain relation exists: a special function, called a yield

condition is required in order to predict the beginning of inelastic strain and so that the elastic–plastic

boundary in the member can be determined after inelastic strains begin. The stress–strain relation in the

inelastic portion is specified by a loading function, which is based on the average of the tension and

compression stress–strain diagrams. Since the loading function must be valid for all states of stress, it is

convenient to first picture the loading function for simple tension.
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The Hencky stress–strain relations introduce the unknown x so that a new independent equation must

be obtained from the loading function. If the von Mises yield condition is being used, the unknown x can

be obtained from as follows
x ¼ GHcoct
soct

: ð97Þ
This relation states that x is known if corresponding values of soct and coct are known for any specified

deformation. Thus, an octahedral shearing stress–octahedral shearing strain diagram gives the loading

function. This stress–strain diagram is called the Schmidt (1932) curve by Sokolovsky (1946). In the elastic

range, x ¼ 1 so that the loading function becomes
soct ¼ GHcoct: ð98Þ

In the inelastic range, the relation may represent the loading function
soct ¼ F ðcoctÞ; ð99Þ

where the function, F , is obtained from simple tension test. Let us consider the compressible case in which l
is different from 0.5. In this case the analysis must make use of the deviatory components of stress and

strain.

In the case of the tension test, let r1 ¼ r so that r2 ¼ r3 ¼ 0. Thus
e1
S1

¼ e2
S2

; ð100Þ
in which
e1 ¼ e1 � e ¼ e1 �
1

3
ðe1 þ e2 þ e3Þ;

e2 ¼ e2 � e ¼ e2 �
1

3
ðe1 þ e2 þ e3Þ;

ð101Þ

S1 ¼ r1 � S ¼ r1 �
1

3
ðr1 þ r2 þ r3Þ ¼ r1 �

1

3
r1 ¼

2

3
r1 ¼

2

3
r;

S2 ¼ r2 � S ¼ r2 �
1

3
ðr1 þ r2 þ r3Þ ¼ � 1

3
r1 ¼ � 1

3
r:

ð102Þ
The strain measured in the direction of r is e1 ¼ e, so that
e2 ¼
e1
S1

S2 ¼ ðe1 � eÞ
�
� 1

2

�
¼ � e1

2
þ e
2
¼ � e

2
þ e
2
: ð103Þ
If the material is assumed compressible, for uniaxial state of stress, e2 ¼ e3 ¼ �le. For this condition we

have
coct ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � e2Þ2 þ ðe2 � e3Þ2 þ ðe3 � e1Þ2

q
¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðe1 � e2Þ2

q
¼ 2

ffiffiffi
2

p

3
ðe1 � e2Þ

¼ 2
ffiffiffi
2

p

3
ðe1 � e2 � eÞ ¼ 2

ffiffiffi
2

p

3
e

�
þ e
2
� e
2
� e

�
¼

ffiffiffi
2

p
e �

ffiffiffi
2

p
e: ð104Þ
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Using the fact that the volume changes are elastic follows:
e ¼ S
3KH

¼ 1

3
r
1

3

3ð1� 2lÞ
EH

¼ 1

3

ð1� 2lÞ
2GHð1þ lÞ r: ð105Þ
Thus
coct ¼
ffiffiffi
2

p
e �

ffiffiffi
2

p

3

ð1� 2lÞ
2GHð1þ lÞ r: ð106Þ
Eq. (106) can also be written in terms of soct instead of r
coct ¼
ffiffiffi
2

p
e � ð1� 2lÞ

2GHð1þ lÞ soct; ð107Þ
where
soct ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2

q
¼ 1

3

ffiffiffiffiffiffiffi
2r2

1

q
¼

ffiffiffi
2

p

3
r: ð108Þ
If the material is assumed incompressible, l ¼ 0:5. For this condition Eq. (106) gives
coct ¼
ffiffiffi
2

p
e: ð109Þ
8.2. Octahedral shearing stress–octahedral shearing strain RDA diagram

In Sections 5 and 6 it was proposed that the average of the tension and compression stress–strain

diagram could be approximated by 1 < i < n and 1 < j < m points in which stress and strain are closely
determined by RDA. In the visco-elastic–plastic range of the RDA stress–strain diagram,

e ¼ eðiÞY ¼ ð1þ iu
ÞeP (see Eq. (89)). This value of e can be substituted into Eq. (107) to give loading function

F ðiÞ. Now, let us present the extension of von Mises yield function in the first and ith iteration where first

total strain leads from Eq. (81)
eð1ÞY ¼ uð1Þ
Y eP ¼ ð1þ u
ÞeP;
so that
coct;Y ¼
ffiffiffi
2

p
ð1þ u
ÞeP �

ð1� 2lð1Þ
Y Þ

2Gð1Þ
H ð1þ lð1Þ

Y Þ
soct;Y ¼

ffiffiffi
2

p
ð1þ u
Þ rP

EH

� ð1� 2lð1Þ
Y Þ

2Gð1Þ
H ð1þ lð1Þ

Y Þ
soct;Y

¼
ffiffiffi
2

p
� ð1þ u
Þ 3ffiffiffi

2
p soct;P

1

EH

� ð1� 2lð1Þ
Y Þ

EH

soct;Y ¼ soct;Y 3ð1þ u
ÞnY � 1þ 2lð1Þ
Y

h i 1

EH

; ð110Þ
where
nY ¼ soct;P
soct;Y

¼ rP

rY

: ð111Þ
The inverse relationship of u
ðlÞ (see Eq. (83)) is defined by
lð1Þ
Y ¼ 1

2
66664 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:002
uð1Þ
Y

1þuð1Þ
Y

� �
þ 1

4

s
3
777751000: ð112Þ
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Thus
FY ¼ EH

3ð1þ u
ÞnY � 1þ 2lð1Þ
Y

: ð113Þ
Lower yield point Y ð1Þ
p ¼ YL (see Eq. (88)) is obtained from the yield condition, which is based on the

assumption of plasticity and can be substituted into Eq. (110) to give
cð1Þoct ¼ sð1Þoct 3ð1þ u
Þnð1ÞY � 1þ 2lð1Þ
Y

h i 1

EH

; ð114Þ
where
nð1ÞY ¼ soct;P

sð1Þoct

¼ rP

Y ð1Þ
p

¼ rP

rY þ EH

u
 ðeP � eEÞ
: ð115Þ
Thus
F ð1Þ ¼ EH

3ð1þ u
Þnð1ÞY � 1þ 2lð1Þ
Y

: ð116Þ
The ith total strain leads from Eqs. (89)
eðiÞY ¼ uðiÞ
Y eP ¼ ð1þ iu
ÞeP:
Thus
cðiÞoct ¼ sðiÞoct 3ð1þ iu
ÞnðiÞY � 1þ 2lðiÞ
Y

h i 1

EH

; ð117Þ
where
nðiÞY ¼ soct;P

sðiÞoct
¼ rP

Y ðiÞ
p

¼ rP

rY þ EH

iu
 eP � 1þu


1þiu
 eE
� � ð118Þ
and
lðiÞ
Y ¼ 1

2
66664 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:002
uðiÞ
Y

1þuðiÞ
Y

� �
þ 1

4

s
3
777751000: ð119Þ
Thus
F ðiÞ ¼ EH

3ð1þ iu
ÞnðiÞY � 1þ 2lðiÞ
Y

: ð120Þ
Table 7 presents determining soct and coct of metals in the visco-elastic–plastic range, which are analyzed in

this paper. Octahedral shearing stress–octahedral shearing strain diagrams in this range are shown in Figs.

13 and 14.

In the visco-plastic range of the RDA stress–strain diagram, e ¼ e
ðjÞY (see Eq. (94)). It will be seen from
Table 7 that for the last ðn ¼ 13Þ visco-elastic–plastic strain of all metallic bars, Poisson ration is practically

equal to 0.5. Therefore the value of e can be substituted into Eq. (109) to give loading function F ðjÞ.



Table 7

RDA procedure for determining octahedral shearing stress and octahedral shearing strain of metals in the visco-elastic–plastic range

Aluminum Copper Brass Lead Steel prototype

EH [MPa] 69 600 116 000 90 200 15 700 210 000

u
 5.907559 1967573 2.113035 2.063863 1.998469

l 0.427196 0.331206 0.339042 0.336251 0.333333

GH [MPa] 24383 43570 33681 5875 78750

soct;p 22.89 46.31 38.52 11.06 66.94

coct;p 0.000939 0.001063 0.001144 0.001883 0.000850

soct;E 30.132 60.94 50.69 14.56 88.15

coct;E 0.001236 0.001399 0.001505 0.002478 0.001119

uð1Þ
Y 6.907559 2.967573 3.113035 3.063863 2.998469

lð1Þ
Y 0.436293 0.373629 0.378078 0.37661 0.374601

soct;Y 35.23 91.91 74.68 21.61 132.30

nY 0.649585 0.503821 0.515844 0.511998 0.505950

coct;Y 0.006749 0.003354 0.003787 0.006138 0.002709

sð1Þoct 34.00 84.48 68.92 19.92 121.70

nð1ÞY 0.672997 0.548158 0.558960 0.555503 0.550025

cð1Þoct 0.006751 0.00337 0.003802 0.006165 0.002722

uð2Þ
Y 12.815118 4.935146 5.22607 5.127726 4.996938

lð2Þ
Y 0.463271 0.415324 0.419253 0.417967 0.416191

sð2Þoct 35.79 94.37 76.65 22.18 135.33

nð2ÞY 0.639405 0.490708 0.502583 0.498725 0.492833

cð2Þoct 0.012603 0.005773 0.006559 0.0100607 0.00467

uð3Þ
Y 18.722677 6.902719 7.339105 7.191589 6.995407

lð3Þ
Y 0.474086 0.436254 0.439558 0.438481 0.436986

sð3Þoct 35.90 95.32 77.36 22.40 137.17

nð3ÞY 0.637557 0.485805 0.497959 0.494001 0.487989

cð3Þoct 0.018444 0.008162 0.009299 0.015031 0.006607

uð4Þ
Y 24.630236 8.870292 9.45214 9.255452 8.993876

lð4Þ
Y 0.479915 0.448839 0.451652 0.450737 0.449464

sð4Þoct 35.85 95.20 77.26 22.36 137.01

nð4ÞY 0.638480 0.486383 0.498627 0.494626 0.488577

cð4Þoct 0.02428 0.010538 0.012028 0.019478 0.008535

uð5Þ
Y 30.537795 10.837865 11.565175 11.319315 10.992345

lð5Þ
Y 0.483561 0.45724 0.459679 0.458886 0.457782

sð5Þoct 35.77 94.92 77.03 22.30 136.60

nð5ÞY 0.639742 0.487833 0.500092 0.496090 0.490027

cð5Þoct 0.030104 0.012909 0.014749 0.023811 0.010457

uð6Þ
Y 36.445354 12.805438 13.67821 13.383178 12.990814

lð6Þ
Y 0.486056 0.463245 0.465394 0.464697 0.463724

sð6Þoct 35.72 94.64 76.81 22.24 136.19

nð6ÞY 0.640755 0.489291 0.501565 0.497562 0.491503

cð6Þoct 0.035941 0.015276 0.017467 0.028198 0.012375

uð7Þ
Y 42.352913 14.773011 15.791245 15.447041 14.989283

lð7Þ
Y 0.487871 0.467753 0.469671 0.469049 0.468181

sð7Þoct 35.67 94.38 76.61 22.17 135.83

nð7ÞY 0.641686 0.490610 0.502861 0.498937 0.492816

cð7Þoct 0.041773 0.017638 0.020182 0.032562 0.014293
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Table 7 (continued)

Aluminum Copper Brass Lead Steel prototype

uð8Þ
Y 48.260472 16.740584 1790428 17.510904 16.987752

lð8Þ
Y 0.489251 0.47126 0.472991 0.47243 0.471647

sð8Þoct 35.62 94.17 76.43 22.13 135.52

nð8ÞY 0.642451 0.491740 0.504009 0.500000 0.493947

cð8Þoct 0.047592 0.020002 0.022893 0.036946 0.016208

uð9Þ
Y 54.168031 18.708157 20.017315 19.574767 18.986221

lð9Þ
Y 0.490335 0.474067 0.475644 0.475133 0.47442

sð9Þoct 35.59 93.98 76.29 22.08 135.26

nð9ÞY 0.643046 0.492727 0.504974 0.501067 0.494911

cð9Þoct 0.053425 0.022363 0.025607 0.041312 0.018124

uð10Þ
Y 60.07559 20.67573 22.13035 21.63863 2098469

lð10Þ
Y 0.49121 0.476365 0.477812 0.477344 0.476688

sð10Þoct 35.56 93.82 76.16 22.05 135.02

nð10ÞY 0.643558 0.493568 0.505787 0.501817 0.495758

cð10Þoct 0.059251 0.024723 0.028315 0.045688 0.020037

uð11Þ
Y 65.983149 22.643303 24.243385 23.702493 22.983159

lð11Þ
Y 0.49193 0.47828 0.479617 0.479185 0.478579

sð11Þoct 35.53 93.68 76.06 22.01 134.83

nð11ÞY 0.644070 0.494289 0.506508 0.502570 0.496486

cð11Þoct 0.065076 0.027081 0.031029 0.050041 0.021951

uð12Þ
Y 71.890708 24.610876 26.35642 25.766356 24.981628

lð12Þ
Y 0.492533 0.479901 0.481143 0.480741 0.480179

sð12Þoct 35.52 93.56 75.96 21.99 134.66

nð12ÞY 0.644412 0.494911 0.507137 0.503216 0.497112

cð12Þoct 0.070921 0.029439 0.033737 0.054428 0.023865

uð13Þ
Y 77.798267 26.578449 23.469455 27.830219 26.980097

lð13Þ
Y 0.493046 0.48129 0.482451 0.482076 0.48155

sð13Þoct 35.50 93.46 75.88 21.96 134.51

nð13ÞY 0.644754 0.495485 0.507704 0.503756 0.497669

cð13Þoct 0.076747 0.031801 0.036449 0.058779 0.025778
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Fig. 13. Octahedral shearing stress–octahedral shearing strain diagrams of metals in the visco-elastic–plastic range.

Fig. 14. Overall octahedral shearing stress–octahedral shearing strain diagrams of metals.
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Table 8 presents determining soct and coct of metals in the visco-plastic range. These values are shown in

Fig. 14.

In a hollow-torsion test, the only no vanishing components of stress and strain are sxy ¼ s and cxy ¼ c.
From the following equations leads:
coct ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex � eYÞ2 þ ðeY � ezÞ2 þ ðez � exÞ2 þ

3

2
ðc2xy þ c2yz þ c2zxÞ

r
¼

ffiffiffi
2

p
ffiffiffi
3

p c; ð124Þ
soct ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � rYÞ2 þ ðrY � rzÞ2 þ ðrx � rzÞ2 þ 6ðs2xy þ s2yz þ s2xzÞ

q
¼

ffiffiffi
2

p
ffiffiffi
3

p s: ð125Þ
This means that s–c diagram and the soct–coct diagram for a given material have similar shapes.



Table 8

RDA procedure for determining octahedral shearing stress and octahedral shearing strain of metals in the visco-plastic range

Aluminum Copper Brass Lead Steel prototype

EH [MPa] 69 600 116 000 90 200 15 700 210 000

u
 5.907559 1.967573 2.113305 2.063863 1.998469

l 0.5 0.5 0.5 0.5 0.5

l0 [cm] 49.24 44.70 43.22 33.647 50

rp [MPa] 48.55 98.23 81.72 23.47 142.00

A=Ared 4.246636 9.04552 7.980394 4.995701 11.15333

mð1Þ 0.53920 0.44512 0.45332 0.45066 0.44655

cð1Þoct [%] 13.0446 8.5290 8.9916 11.2974 7.9158

sð1Þoct 42.45 104.03 84.98 24.55 149.90

mð2Þ 0.48012 0.40117 0.40813 0.40585 0.40236

cð2Þoct 15.5197 10.6605 11.1522 13.4769 10.0488

sð2Þoct 47.67 115.43 94.39 27.26 166.37

mð3Þ 0.45514 0.38231 0.38877 0.38665 0.38339

cð3Þoct 17.9948 12.7918 13.3129 15.6563 12.1820

sð3Þoct 50.28 121.12 99.08 28.61 174.60

mð4Þ 0.44140 0.37180 0.37800 0.37600 0.37284

cð4Þoct 20.4699 14.9232 15.4735 17.8358 14.3151

sð4Þoct 51.85 124.55 101.91 29.42 179.54

mð5Þ 0.43267 0.36513 0.37115 0.36919 0.36613

cð5Þoct 22.9449 17.0547 17.6341 20.0151 16.4483

sð5Þoct 52.90 126.82 103.79 29.96 182.83

mð6Þ 0.42666 0.36050 0.36641 0.36449 0.36148

cð6Þoct 25.4201 19.1861 19.7947 22.1945 18.5814

sð6Þoct 53.64 128.45 105.14 30.35 185.18

mð7Þ 0.42225 0.35711 0.36293 0.36102 0.35807

cð7Þoct 27.8951 21.3175 21.9554 24.3739 20.7146

sð7Þoct 54.20 129.67 106.15 30.64 186.94

mð8Þ 0.41889 0.35451 0.36027 0.35837 0.35545

cð8Þoct 30.3701 23.4489 24.1160 26.5533 22.8478

sð8Þoct 54.64 130.62 106.93 30.87 188.32

mð9Þ 0.41624 0.35246 0.35817 0.35630 0.35340

cð9Þoct 32.8453 25.5803 26.2767 28.7327 24.9808

sð9Þoct 54.98 131.38 107.56 31.05 189.42

mð10Þ 0.41407 0.35080 0.35647 0.35463 0.35173

cð10Þoct 35.3203 27.7117 28.4372 30.9121 27.1140

sð10Þoct 55.27 132.00 108.07 31.19 190.32

mð11Þ 0.41231 0.34942 0.35505 0.35319 0.35035

cð11Þoct 37.7954 29.8430 30.5979 33.0916 29.2471

sð11Þoct 55.51 132.52 108.50 31.32 191.06

mð12Þ 0.41081 0.34827 0.35387 0.35203 0.34919

cð12Þoct 40.2704 31.9745 32.7586 35.2709 31.3803

sð12Þoct 55.71 132.96 108.86 31.42 191.67
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9. Conclusion

The RDA method has been applied to predict and described some different aspects of inelastic behavior

of metallic bars.

The good agreement between RDA-predicted and measured data for the laboratory-tested steel bars gave

confidence in the RDA predictions as a credible base for explanation of the phenomenon of discontinuous

plastic deformation.
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• Proportional stress or reaction-stress of clamped bars is obtained using physical characteristics of metal

only, like as: specific heat, coefficient of linear thermal expansion and mass density.

• Elasticity stress of the bars under compression is obtained by Euler’s formula and RDA similitude from

which we have that elasticity stress also becomes dependent upon the dimensions of the bar (its length
and diameter) and thus is no more a physical characteristics of the material only.

• In ductile materials like metals some difference between point of proportionality and point of elasticity

produce the deviation from perfect elasticity with dissipation of mechanical energy through quasi-vis-

cous flow or visco-elastic creep. This is the reason of the drop (lower-yield point) in the stress–strain

curve in the average r–e diagrams.

• Transition from visco-elastic–plastic range beyond the lower-yield point is obtained using by iterative

procedure and must be continued until the magnitude of the error of the stress level becomes lesser than

some previously assigned value.
• Transition from strain hardening (visco-plastic) range with the reduction of cross-sectional area is diffi-

cult to obtain by the experimental investigations except determination the ultimate or fracture stress and

strain. Above determined RDA iterative procedure through strain hardening branch (see Sections 6)

may be used for comparison when alternative members under various load types are considered. After

reaching ultimate residual strains the convergences of stress levels are finished, thus indicating a well-de-

fined RDA fracture stresses as shown in Fig. 9.

• The RDA isochronous stress–strain diagram is used to predict the loading functions for the material of

metallic bars. Hencky’s total-strain theory is used under the assumption of compressibility in the visco-
elastic–plastic and assumption of incompressibility in the strain hardening (visco-plastic) range.
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