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Abstract

This paper presents an application of the rheological-dynamical analogy (RDA) for describing the various aspects of
a visco-elasto-plastic behavior of metallic bars related to standard tensile tests. The analogy has been developed on the
basis of mathematical-physical analogy between a visco-elasto-plastic rheological model and a dynamical model with
viscous damping, and is aimed to be used for the analysis of inelastic deforming of materials and structures. In this
presentation, the aim will be to highlight the thermodynamics aspect of proportional stress through hysteretic loop
dissipation, oscillation in the stress—strain curve (lower and upper yield point), transition from plasticity range, tran-
sition from strain hardening range, and RDA fracture stress of thin long metallic bars. This paper provides description
of process of visco-elasto-plastic yielding and numerical example of obtaining isochronous o—¢ diagram of metallic bars
using RDA similitude. In order to demonstrate the ability of the RDA modeling technique, the comparison with
experimental and numerical results by [ASCE, J. Eng. Mech. 125(12) (1999) 1243] is presented. The presented RDA
analysis can be readily used to perform precise shape of isochronous 6—¢ diagrams of metallic bars. The RDA isoch-
ronous stress—strain diagram is used to predict the loading functions for the material of metallic bars.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

About a century has passed since the widespread interest in the subject of inelastic behavior of load-
carrying members began to develop. The subject has been divided broadly into two rather distinct areas.
One area concerns the study of the inelastic behavior of members that are subjected to loads under envi-
ronmental conditions (especially temperature and rate of loading) such that time is not a factor; this type of
inelastic behavior is said to be time independent. For example, members made of most metals and subjected
to static loads at room temperatures will exhibit time-independent inelastic behavior when the loads are
increased beyond the elastic-limit load. The second area concerns the study of the inelastic behavior of
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members that are subjected to loads under environmental conditions such that time is a factor; this type of
inelastic behavior is said to be time dependent. For example, members made of most plastic materials and
subjected to static loads at room temperature will exhibit inelastic behavior, called creep, for all levels of the
load. The longer the time of application of the static load, the greater is the magnitude of the inelastic
deformation when creep occurs.

Although the overall behavior of mild steel members is well documented from many tests, the practical
influence of strain hardening on load capacity, discontinuous plastic deformation, and creep effect has
received little attention so far. The classical theory of plasticity is based on the assumption that the material
is perfectly plastic with identical properties in tension and compression. The material does not exhibit strain
hardening but flows plastically under constant stress. All limit design theories and most metal forming
theories are based on these stress—strain relations. However, the phenomenon of discontinuous plastic
deformation, which is more, pronounced in low than in high-purity metals (Bell, 1973, Section 4.31) cannot
be obtained by above assumptions. If the tension test of a so-called ductile metal is made at higher rates of
application of the load (that is, higher strain rates) than it is used in the ordinary standard procedure, the
magnitude of the inelastic strain which precedes fracture may be greatly reduced and the stresses corre-
sponding to any given strain may be raised (Elam, 1938). Conversely, the yield stress of the material may be
lowered slightly if the strain rate is appreciably lower than one used in the ordinary standard procedure. In
the tension test of a metal it will be recognized that, when low temperature is combined with high strain
rates, the reduction that occurs in the magnitude of the inelastic strain preceding fracture is greater than
when only one of these effects is present.

The phenomenon of discontinuous plastic deformation has been seriously considered from the
beginning of the 19th Century up to today (Froli and Royer-Carfagni, 2000). The subject has been
analyzed into two distinct ways. In one way of thinking, the oscillations can be attributed to the
influence of the testing machine stiffness. Based on this concept Siebel and Schwaigerer (1937-1938)
analyzed the influence of testing-device stiffness on the shape of the o—¢ diagrams. These results were
later confirmed by Miklowitz (1947). The other approach considers them as the reflection of an internal
material instability, irrespective of the loading device (Lempriere, 1962). The concept of distinction
between an ‘averaged’ and a ‘local’ material response was suggested by Froli and Royer-Carfagni (1997,
1999, 2000).

The present paper represents an attempt to interpret the problems associated with the tensile response of
metallic bars, both time independent and time dependent, in the unified manner by solving both types of
problems using the same iterative rheological-dynamical analogy (RDA) procedure. After several years of
research, the author has found that using the rheological-dynamical modulus relationship can solve both
types of problems of isochronous stress—strain relationships. The fundamental statement of this theoretical
tool and the governing differential equations have already been explained by Milasinovi¢ (2000) where
RDA was used to predict the buckling behavior of slender columns. In the second paper, the author
(Milasinovi¢, 2003) demonstrates that RDA is also capable to model the fatigue behavior of axially,
cyclically loaded bars.

In this paper the proportional stress or reaction-stress of clamped metal bar under axially fatigue process
is obtained using physical characteristics of metal only, like as: specific heat, coefficient of linear thermal
expansion and mass density. Elasticity stress of the bar under compression is obtained by RDA formula
from which we have that elasticity stress also becomes dependent upon the dimensions of the bar (its length
and diameter) and thus is no more a physical characteristics of the material only. In ductile materials like
metals, some difference between point of proportionality and point of elasticity produce the deviation from
perfect elasticity with dissipation of mechanical energy through quasi-viscous flow or visco-elastic creep.
This is the reason of the drop in the stress—strain curve in the average o—¢ diagrams (upper-yield and lower-
yield point). Transition from plasticity range continues until the magnitude of the error of the stress level
for plastic yielding becomes lesser than some previously assigned value.
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Strain hardening is the term used to define the increase in strength with increasing strain as plastic
deformation or flow occurs beyond the lower-yield point. Strain hardening range is difficult to obtain by the
experimental investigations, except determination the ultimate or fracture stress and strain. In the present
paper this phenomena is explained in terms of visco-plastic yielding. Iterative RDA procedure for stress
levels and strains for visco-plastic yielding, which include explanation of fatigue process and reduction of
cross-section area with fracture of the bar, is derived. Bernoulli’s energy theorem is used for the evaluation
of the localized reduction of cross-section area. Transition from visco-plasticity range continues until the
magnitude of the error of the stress level for visco-plastic yielding becomes lesser than some previously
assigned value.

Loading functions for the material of metallic bars are obtained using by Hencky’s total-strain theory
under the assumption of compressibility in the plastic and assumption of incompressibility in the strain
hardening range.

2. Rheological-dynamical analogy (RDA)

All inelastic deformation is time sensitive, and because of that the rheological analysis proves
unavoidable. Elasticity, plasticity, viscosity and strength are essential rheological properties from which
most of other complex properties may be derived (Reiner, 1955).

Creep properties are usually obtained from tension and compression specimens subjected to constant
loads at constant temperature. A typical tension creep curve is shown in Fig. 1. The strain at zero time has
an elastic component. A mechanical disturbance (strain) propagates in an elastic medium at the finite
velocity \/En/p. In a primary creep range, the creep rate continues to decrease with time. If the material
exhibits a minimum strain rate oy//g, the secondary creep rate designates the range of steady-state creep.
At the end of the secondary creep range, the effect of the increase of stress is the speared because the
reduction in cross-sectional area begins to influence on deformation so that the strain rate increases with

Strain | Primary creep Tertiary creep
range Secondary creep range range
i Wisco-plastic éﬁect
Visco-elastic-plastic effect with the reduction of
' Y cross-sectional area
Fracture

Transiet creep

Mirimum creep rate

Elastic stram at zero tine

Time

Fig. 1. Typical constant load—tension creep curve.
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time until fracture occurs. The latter range of the creep curve may not exist for other states of stress;
consequently the tertiary creep range is usually not considered in creep theories.

Every strain, in principle, is a function of time because a stress is always introduced into the body during
a definite time interval (even a very small one) and therefore the isochronous stress—strain relationship must
be included in the analysis of material effects. The significant aspect of the three phenomena of isochronous
stress—strain relationships mentioned so far according to the RDA can be represented as indicated in Fig. 2.
Path APE includes the elastic effect; path EY, Yy C includes visco-elastic—plastic effect; path CD includes
visco-plastic effect with reduction of cross-section area.

As stated earlier (path APE), the majority of materials are in the elastic and visco-elastic range in the
conditions of low loading, whereas after reaching the yield stress, it transits to the visco-elastic—plastic (path
EY Yy C) and visco-plastic (path CD) range.

Polakowski and Ripling (1966) has explained the flow, which occurs beyond the lower-yield point in
terms of dislocation theory. Here, it is assumed that the strain is measured when the specified stress has
been reached. Strain ¢g obtained in this way shall be considered to be independent of time, i.e. instanta-
neous. Elastic material behavior can be modeled by a linear spring (H). Therefore, instantaneous or initial
strain should be ¢g = 0y/Ey where Ey is the elastic modulus. The time-dependent, or delayed, &, and &,
strains are measured from the time, when the instantaneous strain has developed. Delayed elastic or visco-
elastic strain &, may be imagined as a common behavior of elastic Ex and viscous Zx materials and
modeled by Kelvin’s model (K). The concept of delayed plastic or visco-plastic material behavior ¢,, may
be imagined as a common behavior of the friction slider component osy and viscous component Ay of
materials. The friction slider develops a stress gsy, becoming active only if ¢ > Y = oy + H' - &,,(t), Where o
is the total applied stress and Y is some limiting yield value. The stress level in the friction slider depends on
whether the threshold or yield stress Y, has been reached. If the stress ¢ is discontinued, the friction slider
does not return into its original position. Visco-plastic material behavior can be modeled by the third of the
sequentially linked models (N/StV) as shown in Fig. 3. Initial strain rate should be ¢ = a//x + (¢ — oy)/An.

In general each isochronous stress—strain diagram can be accurately approximated by following struc-
tural (rheological) equation if strain can be represented as indicated in Fig. 1

s g8
84
Stress 5 3 ~§
Mo B Visco-plastic effect
! D
il
N C
Efve
Fl
4 Strain

Fig. 2. Isochronous stress—strain curve illustrating elastic, visco-elastic—plastic and visco-plastic effects.
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Fig. 3. Rheological-dynamical analogy.

H-—K — (N|StV). (1)

The governing differential equation has already been explained by (Milasinovi¢, 2000)
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The homogeneous equation of the inhomogeneous equation (2) has the following form:
8() kAN + &(2) (Exin + H' Ax) + () ExH' = 0, (3)

where Ak, AN, Ex and H' are given constants at fixed step time. Physical mechanism of the rheological-
dynamical analogy and the governing equations between parameters where confirmed by Milasinovié¢
(2003).

Based on the analogy, one very complicate nonlinear visco-elasto-plastic problem may be solved as a
simpler linear dynamical one.

Replacing Ax - An by m -y, Ex - Ax+H' - Ax by ¢-y and Ex - H' by k-, the differential equation (3)
becomes

B()m + #(0)c + e(0)k = 0, 4)
where
m = AK_j'N ) Cc = (EKAN ;_HI;LK) ) k - EK'yH, . (5)

According to a dynamical model and the RDA the periodic stress may be expressed by means of the
exponential function

G// _ O_Aeiwgt’ (6)
The strain lagging behind the stress by the phase difference « is given by
& = SAei(w”t_a). (7)

The complex modulus may be expressed by the ratio of the variable stress to the variable strain as follows:

"
=2 =T (8)

g ea
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According to the Moivre theorem, we have

e = cos o + isino. 9)
Thus
E* :Z—A(cosoc—&—isinoc), (10)
A

where the dynamic and the loss modulus are
g OA .
Er = ReE* =2 cosa, E; = ImE* =2 sino. (11)
TN €A
Among the various types of steady variable stresses, cyclic stresses are the most important; besides, these
stresses are the most widely investigated. In addition, cyclic strain response does not depend much on the
shape of the time curve within the cycle.
The curve in Fig. 4, which describes the variation of stresses in time, may considerably differ in
appearance; variation of stresses in machine parts often follows the sinusoidal law

o(t) = 09 + oa sin(w,t), (12)
where w, is load or stress frequency. The maximum absolute stress in the cycle is denoted by ,,.x, While the

minimum is denoted by ;. The ratio of minimum stress to maximum with the signs taken into account is
known as the cycle characteristic, or the coefficient of asymmetry of cycle

r:O-min. (13)

Gmax

The coefficient varies between —1 and +1. The half of the sum of maximum and minimum stresses of a cycle
(taking into consideration their signs) is known as the constant component of cycle, or mean cycle stress

_Gmax+01nin_l+r
N 2 )

The half of the difference of maximum and minimum stresses (also taking into consideration their signs) is
known as the variable component of cycle or the amplitude of stresses in the cycle

() O max - (14)

Omax — Omin -7
OA — = Omax- (15)

2 2
The RDA equation due to sinusoidal stresses takes the form of

k Ex+H . A /
Et)m+é(t)c + e(t)k = oa ( + Sk w? m) sin(wyt) + oa (c + K+AN)w,r cos(w,t)
Ey v Ey Ey Y
k Ex+H Ex
—t— ] - . 16
+ 0o <EH + y > oy . (16)

Fig. 4. Cyclic variation of stress.
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The solution for this second-order differential equation with constant coefficients is
e(t) = e + ¢p, (17)
where ¢, is the complementary solution and ¢p is the particular solution for the given equation
ep = Asin(w,t) + Beos(wyt) + C, (18)

where 4, B and C are constants

P, (k — mo? 5 CWy s (k — mw?) — P,cw, 1 1 1 1
_ B mw;)+QC“’2, p= &l ”’”’;) «“, CJO<++,>—JY,, (19)
(k — m2)” + (coy) (k — mw2)” + (co,) Ew Ex H H
where
k EK + H' , m C /1]( + )\.N
JR L Sk R e My . 20
GA(EH+ . ) TN, 0 GA(EH-i- . w (20)
Strain under constant stress, taking into consideration delayed elastic or visco-elastic strain is
ag 00 _ 00
d)=g+C=¢=—+_—>(1 —e W) = 1+ o). 21
( ) h EH EK ( ) EH(tO) ( (p) ( )
where creep coefficient is
Eve 1 (t) —(t/Tx)
) =—=—"=(1- k). 22
o) === = (1) (22)
Cyclic strain is given by
&y (1) = A sin(w,t) + B cos(w,t) (23)
or
&y (1) = easin(aw,t — a), (24)

where cyclic strain amplitude and phase difference by which the strain lags behind the stress are

m—¢ P10 (25)

(k — m2)’ + (co,)’

P,cw, — Q,(k — mo?)
P,(k — mw?) + Q,cm,

tano = (26)
When the structural member is loaded cyclically, the rheological behavior of the member must be char-

acterized by the dynamic time of retardation 7. Now, taking into account formula (22) we have RDA
visco-elastic modulus

BR(1.0) = 000 (1 _ )  Enlh) 1)

where

e W) ~ 0. (28)
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Using Egs. (25) and (26) we find rheological-dynamic (RDA) modulus as follows:
P,(k — mw?) + Q,co,

P+ 02
Substituting the dynamic time of retardation, 7 = 1/ in Eq. (29) we obtain the RDA modulus which
define the isochronous stress—strain relationship in the following form:

ER:GA

(29)

140 D1 + Dl
E ) HD(1,
Er(t,t0) = — , () 1 B th) . () 1 1 , (30)
+0
Elz_l(to) + (EE(HO) + HD(t,ty) (EH(tO) + EE(;,{O) + HP(t,ty) )
where
w
6=—"2=uw,TP. 31
w K (31)

3. Proportional stress
3.1. Heat and work: determining the proportional stress

The study of the quantitative relationships between heat and other forms of energy is called thermo-
dynamics. In this paper we shall be concerned with the relation of thermal expansion work to fictitious heat
energy, taking the RDA into account.

For example, if we alternately subject an isolated steel bar (adiabatic process) to a large number of
tensions and compressions under the stress on.,x = op (axial fatigue), we shall observe after a definite
number of such changes in stress some viscous flow of steel, the strain lags the stress, and this is range when
the fatigue appears.

When bar is stretched, the elastic potential energy is stored in the material (see Fig. 5). The work re-
quired to stretch or compress the bar does not depend on the weight of the bar. Consequently, gravity is not
involved in the measurement of elastic potential energy U;. Instead, the work required for the stretching or
compressing depends upon the elasticity of the model

7

Consider a elliptical loop of the rheological-dynamical model shown in Fig. 5, where
d"(t) = ciy(t) = carea cos(wgt — @). (33)

For a cyclic stress variation along the entire loop, the rate of release of visco-elastic energy is equal to the
area enclosed by the loop, i.e.

J
Wave = Cw, & []\?} . (34)

The cyclic strain amplitude &5 have already been explained by Milasinovi¢ (2003), where RDA was used to
predict the fatigue limit

oa [(I+e)+8
En(to) 1+6

(35)

EA
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A

Fig. 5. Elastic potential energy and hysteretic loop dissipation in terms of stress—strain diagram.

where ¢* is structural creep coefficient. T2 = 1/w and then the damping c (see Eq. (5)) is given by
¢ = 2kTY = c.. (36)

Thus the rate of release of visco-elastic energy is given by

L= L (l4e)+8
Wave(r) = nkE—%I 3 op 1o 0

The area of transfer of energy is cross-sectional area 4, and the energy dissipation is given by
Uy = AWy ye. (38)

In the special case, at ¢* — 0, we have elastic behavior and the rate of release of elastic energy from formula
(37) as follows:

1 (1-7r)?
Wyr(r) = nkE—zH( 3 ) 6%5. (39)

It can easily be shown that the total potential energy of the system IT = U; — W decreases as a temperature
of the system rise. When all elastic potential energy is converted through hysteretic loop dissipation, we
have

U =0, (40)
and relative frequency o.(r) for theoretical estimation of the fatigue life is
(L+¢) +3(r)
1+ 82(r)

As mentioned above, high cycle frequencies during the cycling adiabatic process cause significant tem-
perature rise in the isolated bar with both edges clamped, Fig. 6, and thermal expansion work Wr, as
follows:

2B, Ly
lAnk(l — ek mk(l—r)*

de(r) = (41)
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Fig. 6. Schematic representation of the bar in the fatigue test.
2
EH OCTAT
%:;LTJ%M (42)

ot is a coeflicient of linear thermal expansion, AT [°C] is the difference between the final temperature and
the original temperature of the bar and Ey is Young’s modulus.

However, when all elastic potential energy is converted through hysteretic loop dissipation we also
have

Uy = Wr. (43)

From Eq. (43) we may obtain difference between the final temperature and the original temperature of the
bar as follows:

1 |1 (14+9)+8
Anf>—¢ (L+o7) +0 5ov (44)

ot 53(7') 1 —+ 52 EH.

In the special case at ¢* — 0 (perfect elasticity), we have

1 0 op

Al = St B

(45)

where 0 = ;N (N is the number of cycles) and ap is applied proportional stress. When it is fatigue reached,
0 = J.(r) and thus

ATy = — 2. (46)

The amount of the fictitious heat in an isothermal process which must be added to the metal rod to simulate
the observed temperature change is

O = mcATg = pAlycATg, (47)

where c is specific heat of the metal. Hooke’s law states that within the limits of perfect elasticity, strain is
directly proportional to stress op. Therefore we may state the first law of thermodynamics as follows: when
all elastic potential energy in an adiabatic fatigue process is converted through hysteretic loop dissipation
with temperature change to produce thermal expansion work, or when fictitious heat is added to the steel
rod to simulate the observed temperature change, there is no loss of energy. Thus

EnoATE 2pc

. 48
EHOCgF ( )
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Substituting ATg in Eq. (46), we obtain the proportional stress as reaction-stress of clamped metal rod as
follows:
~ 2pc

= . 49
= (49)

The proportional strain is ¢p = op/Ey.

3.2. Steel bar as prototype

The fatigue behavior of axially loaded steel bars has already been explained by Milasinovi¢ (2003).
The specimen on which, the work was done was an isolated reinforced steel bar: /; = 50 cm, ¢ = 1.9
cm, ¢=0.113 kecal/(kgC), ar = 0.0000125 1/°C, p = 7860 kg/m?, Ey =2.1 x 10> MPa. The bar is
loaded with cyclic sinusoidal load in symmetrical cycle: oy =0, g5 = op = 141 MPa and frequency,
f =20 Hz.

Elastic potential energy

a_%, 1412 0.019%n

= 0.5=6.711.
26T 221 %105 4

U, =

When it is fatigue reached (see Milasinovi¢, 2003, Table 2 and Fig. 12) we have J.(r) = 70.167,
ATg = 53.71 °C, and Wz = 23667.78 J/m?. Thus
Energy dissipation

0.019°n

i - 6.711J

Uy = Wypd = 23667.78

Thermal expansion work

2.1 x10'(0.0000125 - 53.71)2 0.019°%

S5=6.71
> 40567J

Wr

Proportional stress as reaction-stress of clamped steel bar

2pc2-7860-0.113

o 0.0000125 = 142108800 Pa = 142 MPa

op =

Reaction stress of clamped steel bar (op = 142 MPa) is in excellent accordance with applied proportional
stress (o4 = op = 141 MPa) from the axial fatigue experiment.

3.3. Metallic bars

Proportional stress of clamped steel bar in axial fatigue process (see Eq. (49)) is obtained using physical
characteristics of the metal only, like as: specific heat of the metal ¢, coefficient of linear thermal expansion
ot and mass density p.

For the other metallic bars proportional stresses are shown in Table 1. The values of physical charac-
teristics of metals: ¢, at, p and Ey are taken form the handbook of Modern Physics (Williams et al., 1968).
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Table 1
Proportional stress of metallic bars
Aluminum Copper Brass Lead Steel prototype
¢ [kcal/kg °C] 0.124 0.0924 0.0917 0.0305 0.113
p [kg/m’] 2700 8930 8600 11310 7860
ot [1/°C] 0.0000238 0.0000168 0.0000193 0.0000294 0.0000125
o, [N/m?] 48 554 622 98230000 81722230 23466327 1.42E + 08
Ey [N/m?] 69 600 000 000 1.16E+11 90200000000 15700 000 000 2.1E+11
0.000698 0.000847 0.000906 0.001495 0.000677

p

4. Elasticity stress
4.1. Dimensional analysis and the RDA similitude

Dimensional analysis is the mathematics of dimensions of quantities and is another useful tool of
rheological-dynamical analogy. In an equation expressing a physical relationship between quantities,
absolute numerical and dimensional equality must exist.

The first equation of RDA (see Eq. (5)) is

_AKAN
==
where 4 is Trouton viscosity. Trouton viscosity is the extensional viscosity, then the yields the following
relation between shear viscosity # and extensional viscosity /4 of Newtonian liquids:
A=3n. (50)

The last equality is known as Trouton’s formula. The product of the mass of a body and its velocity is called
momentum; m - v. Viscosity is transfer of momentum. Thus

mv
A

where A4 is the area of transfer of momentum.

A= (51)
4.2. Some important numbers using the RDA

Dividing the product of viscosity from Eq. (51) by the product of viscosity from the RDA we get

mo\2 pAlgr\2 272 2
(A) _( A ) _pZOU (52)

AKAN JKIN KON
The square root of this ratio

lov
NRDA _ Plo 7 53
R VN (53)
may be called the RDA Reynolds number. This number is known in fluid mechanics as
Ny = %IO. (54)

Newton’s second law of motion can be expressed in several different ways. For example, if we use the first
RDA relationship, we get
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Ax A Ak A Ax A
= RN ARAN 4= F — JKMN (55)
y pa p

The stress is the ratio of the internal force F to the cross-section area A. Thus

F Jxin _ prgo*  plg?

TUAT T4p T Ap A (56)
Dividing the previous equation by stress ¢ we get RDA Euler number
2y?
NRDA _ PRV 57
£ A (57)
This number is known in fluid mechanics as
2
Ne =22, (58)
p
where p is pressure. The elastic force Fg required to stretch a Hooke’s spring is given by the formula
F = kAL, (59)
where £ is the axial stiffness
EnyA
k=—2 (60)
ly
Dividing the internal force F by the elastic force Fg we get RDA Cauchy number
RDA _ pliv® :p_vzl_?, (61)
¢ BNl Ey AAI
This number is known in fluid mechanics as
2
pU
Ne =—. 62
c=E (62)
The square root of this number is known as the Mach number
v
Nu = \/E:H (63)
p
Dividing the internal force F' by the gravitational force F = mg = pAlyg we get
12 2 2 Ji
Pt _T %0 (64)

pdlog g A

The square root of this ratio

— (65)

may be called the RDA Froude number. This number is known in fluid mechanics as
v

\/log.

In general, an engineer is concerned with the effect of the dominant force. In most rheological problem,
gravity, viscosity, elasticity and plasticity govern predominantly, but not necessarily simultaneously.

Np =

(66)
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4.3. Determining the elasticity stress of metallic bars

Crystalline materials like metals consist of a very large number of extremely small crystals. Each of these
is a system of atoms arranged very close to each other in regular rows. These rows form the so-called
crystalline lattice. The deformation of bodies takes place due to a change in the location of atoms, i.e. due
to their getting closer or farther. Elastic deformation disappears when the force causing the deformation is
removed; in this case, the body completely regains its initial shape and dimensions. This deformation occurs
due to elastic distortion in the crystalline lattice. It has been experimentally observed that the elastic
deformation continues till the forces being applied do not exceed a certain limit. Elasticity compressive
stress of two-hinged bar is defined by Euler’s formula

(67)

where (lo/k.)g = /g 18 slenderness ratio at the point of elasticity, £. In this way the elasticity stress also
becomes dependent upon the dimensions of the bar (its length and diameter) and thus is no more a physical
characteristics of the material only.

Euler’s formula for critical force of bar under compression was obtained by integrating the differential
equation of the deflected axis, i.e. it was derived on the assumption that the stresses in the bar are less than
the limit of elasticity when it loses its stability. Consequently, we cannot use the critical stresses calculated
by Euler’s formula if they exceed the limit of elasticity of the given material. Generally, the stress—strain
curve is linear elastic until ¢ < o and nonlinear with considerable visco-elasto-plastic strain, under stress
0 = OE.

4.3.1. Steel bar as prototype
Axial fatigue experiment was performed on the isolated reinforced steel bar: /o = 50 cm, ¢ = 1.9 cm,
Ey = 2.1 x 10° MPa where

_¢'n _¢'n L ¢ 19 Iy 4-50
L=t A= k=== =0 () =T — 105.26,
21000072 oe 187
= 2000 187 MP _0E — 0.000891.
95 =050 1o MPa, e == 70000 89

As indicated in Milasinovi¢ (2000), is the fact that point of elasticity (E) of this steel is in good accordance
with slenderness ratio of 105.26, because elastic Euler’s theory for this type of low-carbon steel (Fe E275:
oy = 275 N/mm?; 6¢ = 390 N/mm?, according to prEN 10113) is not valid for slenderness ratio under the
104.

4.3.2. Metallic bars as true models

Rheological-dynamical models, in general may be either true models or distorted models. True models
have all the significant characteristics of the prototype. Assuming the RDA similitude of metallic bars we
can determine the elasticity stress (see Table 2), taking into account the RDA Euler number. Let us cal-
culate the RDA Euler number using the velocity of the particles v = 6/y/Enp,

_plgp*  ply o* o

NRDA _ o _ 07
E 6A 04 Eyp Eyd’

(68)

At the point of proportionality, P, RDA similitude of metallic bars with the same cross-section area, 4 is
expressed by the formula
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Table 2
Elasticity stress of metallic bars
Aluminum Copper Brass Lead Steel prototype

€p 0.000698 0.000847 0.000906 0.001495 0.000677

Ey [N/m?] 69 600 000 000 1.16E+11 90200 000 000 15700 000 000 2.1E+11

1y [cm] 49.24 44.70 43.22 33.647 50

lo/ka 103.67 94.11 90.99 70.84 105.26

o [N/m?] 63917966 129270577 107520933 30881553 187000 000

eE 0.00091836 0.0011144 0.0011920 0.00196698 0.000891

o 05k I3 &
NRPA =0 — 0 o = im = logm =/ = 69
E Y EH Y P A P,pr A P,tm 0,tm 0pr &pm ( )

4.4. Determining the structural (visco-elastic) creep coefficient of metallic bars

The deviation from perfect elasticity of the deformational response to applied force in continuous,
homogeneous, isotropic solids may be attributed to dissipation of mechanical energy through quasi-viscous
flow or creep of quasi-fluid components produces the visco-elastic response.

The creep coefficient is defined as the ratio of the visco-elastic strain of metallic bar to the elastic strain.
Therefore, it may be determined using RDA similitude between Euler’s and RDA elasticity stress.

Putting the Euler’s elasticity stress into the expression of the RDA Euler number, we get

2 2 2
roA _ 1o OF I; 1 Eym i

— — = — — = —. 70
E A Ey ¢nEy (410>2 4 (70)
4 ¢
RDA expression of the elasticity stress is given by Milasinovi¢ (2000)
Ey
oF =T (71)
kI
where £} /I, = 1/¢n. Now, we have RDA Euler number as follows:
12 GRDA 12 1 E *
RDA _ Y00  _ Y HY¢ X
Ng _Zﬁ_@E_H %ﬁ—low- (72)

Comparing two expressions for the RDA Euler’s numbers, we get the following structural creep coef-
ficient:

T T
—=lyp" = @" = . 73
g =o' =0 = (73)
Table 3
Structural (visco-elastic) creep coefficient of metallic bars
Aluminum Copper Brass Lead Steel prototype
y [kg/em?’] 2.70x 1073 8.93x1073 8.60x 1073 11.31x1073 7.86x 1073
Iy [em] 49.24 44.70 43.22 33.647 50
o* 5.907559 1.9657373 2.113035 2.063863 1.998469

&ne 0.005425 0.002193 0.002519 0.004059 0.00178
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The values of structural creep coefficient for the metallic bars are listed in Table 3. According to the
definition of the creep coefficient we obtain visco-elastic strain as follows:

Eve = (O EE. (74)

5. Visco-elastic—plastic range
5.1. The RDA modulus

If the external force exceeds the elasticity limit £, the body fails to regain completely its initial shape and
size after the force is removed; the difference in size which thus remains is called the plastic (residual)
deformation. In crystalline materials, this deformation is caused by the irreversible displacement of one
layer of crystalline lattice with respect to the other. After the removal of external forces the displaced layers
of atoms retain their position.

Real part of complex modulus (see Eq. (30)) is a measure of the energy dissipation of mechanical energy
through visco-elasto-plastic flow

149 1 1
En(to) + ER (1,10) + H'P(119)

145 1 1 2 1 1 '
2 T (ETK)(:,:O) T () ) (EHuo) T ) T () )

In the special case, when 6 — 0, we have static loading and RDA modulus as follows:

1 1 1
(F+a+)

As started earlier, in the stage of low loading the majority of materials are in the range of visco-elasticity
(H' — o0) with RDA modulus

1
ER=—
Eu ' Ex
where E, (see Eq. (27)) is
E

Ex = q;‘. (77)

For a computed first value of Ex we can determine the appropriate first slope of the plastic strain
do do ER
H/ = — = = . 78
(2) de, de—deg — g—;‘l (78)

After reaching the yield stress oy, deformation process transits to the visco-elastic—plastic range with RDA
modulus expressing by Eq. (75) which can be determined using by H’ expressing by Eq. (78). We are
concerned here with calculations of Er and H’ that are systematically repeated.
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5.2. Stress levels for visco-elastic—plastic yielding

The first value of RDA modulus ER is
n 1 1 Ey

ER - = o* = * (79)
(ﬁ n ﬁ) AL 1+
The first modulus ratio is
(1)
E €
L R S 80
TR T T, (80)
where 8%{1) is the first total strain
&) = (1+¢")e. (81)

ép = ap/Ey is the proportional strain. The value of yield stress oy my be obtained also by using the RDA

E (1) 1 *
oy = oRPA = H _ OE Py _ OE e . (82)
Y Iy Q 1 (p* (p*
kL 50

The relationship ¢*(u) (see Eq. (83)) which has already been formulated by Milasinovi¢ (2003), now gives a
new dependence of yield stress on the Poisson’s ratio (see Fig. 7).

4
S U R S B
1-0.001-p 2.0.001

Q= . (83)

4
- {(10})01#) - 1] 2-0.1001

The magnitude of the yield stress depend upon the magnitudes of elasticity stress and of Poisson’s ratio.
The assumption of incompressibility (u = 0.5) means that oy and o are equal.

The yield stre ss versus the Poisson's ratio

100

10

log yield stress Sy=Se(1+fi)fi
i

0.01 0.1 1
log Poisson’s ratio

Fig. 7. Dependence of yield stress on the Poisson’s ratio.
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The appropriate (first) slope of the plastic strain is

(1) Ey
Hl(l) = ER o) = (I-HP? = EH . (84)
E 1—-—— o
-2 (0%

A lower yield point can be obtained from the yield condition of the RDA, which is based on the assumption
of plasticity

Y =1 =oy +HVs), (85)

where ¢l!) is the first plastic strain
(1) (1)
€ 3

ORI (86)

€ : -

Py It
The strain s‘(,;) the is the first visco-plastic strain, which may be obtained from the first total strain as follows:

SE/L) = eg{l) —eg—&e=(14+¢Yep — (1 4+ ¢ )eg = (1 + @) (ep — ¢E). (87)
Consequently,

Y —y — En 88

b = L—O—Y+$(£P_8E)' ( )

In ductile materials like metals the elastic strain eg is greater than the proportional strain ep and this is range
when material instability due to the transition from an upper to a lower yield point appears.

The rate of convergence of stresses Y, for this iterative procedure depends upon the physical charac-
teristics of metals and dimensions of the bars. The procedure of determining the another stress levels for
plastic yielding 1 < i > n continues until the magnitude of the error of the stress level becomes lesser than
some previously assigned value

1 1 En

EY = = =
1 o (i—1)o* 1 * 7
(ﬁ—i—é—i_m}fl)) EH+EH+ Ey tie
(i)
i _ Eu _ ey -
Py :W:‘—Zlﬂa) )
Ex &p
sg) = (1 +1ip")ep,
(i) _Eu
'O — Ex o= (1+1<ﬂ*1) _ EH ’ (89)
- l-me 1o
En
el =&y —ep — e = (1 +i9")ep — (1 + 9"z,
(1) *
, & 1+ @
(i) v
e =2 —gp — — ¢,
PV I+ig®
‘ En 1+ ¢°
YO — gy 4 B0 — : _ 1t
PO b = Oox ip* 1 +1¢*

5.2.1. Steel bar as prototype
Structural creep coefficient of tested reinforced steel bar has already been formulated by Milasinovic¢
(2003) as follows:
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[(%)4 _ 1} 1

. 1-0.001-0.333 2:0.001

" I I
- {( 170,001-0.333) - } 2:0.001

where u = 0.333 is Poisson’s ratio. On the other hand if we use Eq. (73), we have the same value

o n _,
T4y 4-50-786x 103

Using the procedure outlined in Section 5.2, the yield stress oy and a lower yield stress Y. may be calculated
from the first iteration

*

@

&) = (14 ¢°) - ep = 3-0.000677 = 0.002029,

Ea  210000-7.86 x 10~ -3
RDA __ H o B
N TR T 1052601675315 200 MPa,
ke LoD
7oy
352 = (14 ¢") (ep—eg) =3 (ep — &g),
)
) = e = o — o = 0.000677 — 0.000891,
E
H/(l) _ H _ _H
ot 27

210000
2
The results of the next iterations are presented in Table 4. The low-carbon steel Fe E275 and order metals

from Table 4 belong to the group of ductile materials. After the considerable residual strains the conver-
gences of stress levels are finished, as shown in Fig. 8.

Y=oy +H'" &) =280.66 + +(0.000677 — 0.000891) = 258.17 MPa.

5.2.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars (see Section 4.4) we obtain the table (Table 4) of the total
strains and the stress levels for visco-elastic—plastic yielding.

The resulted of total stains and stress levels for visco-elastic—plastic yielding of metallic bars in form of
isochronous stress—strain diagrams are shown in Fig. 8.

6. Visco-plastic range

6.1. Stress levels for strain hardening branch

If we wish to take into account the effect of visco-plastic strain to the stress level, two different proce-
dures are presented in the literature. One procedure is used to approximate the behavior by mechanical
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Table 4

Total strains and stress levels for visco-elastic—plastic yielding of metallic bars
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Aluminum Copper Brass Lead Steel prototype
Ey [N/m?] 69 600 000 000 1.16E+11 90200 000 000 15700 000 000 2.1E+11
0" 5.907559 1.967873 2.113035 2.063863 1.998469
el 0.004819 0.002513 0.00282 0.004579 0.002029
oRPA[MPa] 74.74 194.97 158.42 45.84 280.66
YV =n 72.14 179.20 146.20 42.25 258.17
el? 0.00894 0.004179 0.004735 0.007664 0.003381
sl 75.93 200.18 162. 60 47.06 288.13
) 0.013061 0.005845 0.006649 0.010749 0.004734
Y =xy 76.15 202.20 164.11 4751 290.99
el 0.017183 0.007511 0.008564 0.013834 0.006086
A 76.04 201.96 163.89 47.45 290.64
PR 0.021304 0.009178 0.010478 0.016919 0.007439
) 75.89 201.36 163.41 4731 289.78
e 0.025425 0.010844 0.012393 0.020003 0.008791
Y 75.77 200.76 162.93 47.17 288.91
el)) 0.029546 0.01251 0.014307 0.023088 0.010143
Y7 75.66 200.22 162.51 47.04 288.14
PR 0.033668 0.014176 0.016221 0.026173 0.011496
Y 75.57 199.76 162.14 46.94 287.48
&) 0.037789 0.015842 0.018136 0.029258 0.012848
) 75.50 199.36 161.83 46.84 286.92
10 0.04191 0.017508 0.02005 0.032343 0.014201
Y1 75.44 199.02 161.57 46.77 286.43
ety 0.046031 0.019175 0.021965 0.035427 0.015553
Y 75.38 198.73 161.34 46.70 286.01
ell? 0.050153 0.020841 0.023879 0.038512 0.016905
Y 75.34 198.48 161.14 46.64 285.65
£l 0.054274 0.022507 0.025794 0.041597 0.018258
Y3 75.30 198.25 160.96 46.59 285.33

NN W w
28 8 B8 3

stress (MPa)
o]

g8

Average RDA stress-strain diagrams in visco-elastic-plastic range

/W

r»/‘-“

V .
=

1

strain (%)

—e— Aluminiurm —m— Copper —«—Brass ——Lead —— Steel

Fig. 8. Average RDA stress—strain diagrams of metallic bars in visco-elastic—plastic range according to the RDA similitude.
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models. The two most widely used rules are Time Hardening Rule and the Strain Hardening Rule in which
the problem is that of predicting the creep curve for stress increase.

The present paper represents an attempt to interpret the complex phenomena, with the strain hardening
branch, occurring in the tensile response of metal bars through a simple previously mentioned RDA
procedure. Using the procedure outlined in Section 5.2, the stress level for strain hardening branch Y, can
be obtained from the yield condition as follows:

Yop = 0y + H'eyp. (90)
For a computed value of the first RDA modulus E}g ), the appropriate first stress level for strain hardening
branch YV(;) may be calculated and then a new RDA modulus. The procedure of determining another stress
levels for 1 < j >m continues until the magnitude of the error of the stress level becomes lesser than some
previously assigned value

R - * * )
(ﬁ*ﬁjL#) AL+ 1+20¢
Ey
oy =— = 1+2¢",
ER
Sg) :qu(l (1 +2QD )Sp, (91)
oy = (1 26 )ae = (14 ')
g EY B Ey
- DT = 1 2(P*7
1 -2 (1+2¢%)
En
YW =gy + H'Vel) = B [(142¢%)ep — (1 4+ ¢")eg)
vp _O-Y & 2(p* ()0 SP (p SE'
The jth iteration
R 1 it T ; )
(L+ﬁ+ﬁ> et 1+(G+De
. E
oY =—5=1+0+ 1o’
ER
& = o¥er =1+ (j+ D', ©2)
ep=[1+0+ 1)@*]&» — (1+¢")es,
) — E,@m_ TG En 'EH 7
|5 Tmgme G+ Do
En
YV =y + HYY = oy + ————{[1 + (G + Do'lep — (1 + ¢ )ex}.
vp Y vp Y (j+1)(/7*{[ (,/ )QD]P ( ¢)E}

6.1.1. Steel bar as prototype
E E

Elg) = A - = _H7
1429 5

oy =(1+2-¢") =5,

S(YI):(1+2’([)*)‘8]):5'8P,
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) =(142-¢") -ep — (1 + @) - & = 5-0.000677 — 3 - 0.000891 = 0.000707,

210000
Yy = oy + H' - &) = 280.66 + = —-0.000707 = 317.99 MPa.

The results of the next iterations are listed in Table 5. The stress Y,, = 406.64 MPa at last iteration is in

good accordance with value of fracture stress (o = 390 MPa), recommended in prEN 10113: for steel Fe
E275.

6.1.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars we obtain the table (Table 5) of the stress levels for strain
hardening branch. After reaching ultimate residual strains the convergences of stress levels are finished, thus
indicating a well-defined RDA fracture stresses as shown in Fig. 9.

6.2. Total strain for strain hardening branch

In the initial stages of the tensile test, the cross-sectional area A of the bar almost remains constant, but
beginning from the strain hardening branch stress a noticeable reduction takes place, which is initially
uniform over the entire length of the specimen, and after crossing the strain hardening branch period it
becomes localized. However, once the neck is formed, the relative elongation also becomes dependent upon
the dimensions of the bar (its length and diameter) and thus is no more a characteristics of the material only.

As mentioned above the total strain in the visco-elasto-plastic range is

60 — p0g,. (93)
Knowing the last value eg'), we can calculate the change in the value of extension of the bar under tension
for strain hardening branch as

*(j n A j
i) = ) 4 dggy (94)

Areq 18 localized reduction of cross-section area in the narrowest part of the neck.

Table 5
Stress levels for strain hardening branch of metallic bars
Aluminum Copper Brass Lead Steel prototype

Yo 90.04 220.68 180.27 52.07 317.99
Y 101.12 24486 200.23 57.82 352.92
Yo 106.67 256.94 210.20 60.69 370.38
Yip 109.99 264.20 216.19 62.41 380.86
Yipo 112.21 269.03 220.18 63.56 387.84
Y 113.79 272.43 223.03 64.38 392.83
Yo 114.98 275.07 226.17 65.00 396.57
Yipt® 115.90 277.09 228.83 65.48 399.49
Yip® 116.64 278.70 223.16 65.86 401.81
Yip0 117.25 280.02 229.25 66.17 403.72
Yopn 117.75 281.12 230.16 66.44 405.31

Ypin 118.18 282.05 230.93 66.66 406.65
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Overall RDA stress-strain diagrams
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stress (MPa)
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Fig. 9. Overall stress-strain diagrams for metallic bars according to the RDA similitude.

Previously, the author (Milasinovi¢, 2003) has underscored the need to introduce a distinction between
an ‘original’ and a ‘localized reduction’ cross-section area, considering the fatigue problem of metallic thin
long symmetrical bars. The cross-section area in the narrowest part of the neck may be obtained by
applying Bernoulli’s energy theorem, taking into account the minimum strain rate creep op/Ax of material

o1 +5p4 108%1—0202‘*‘50/4 10851_0:‘72""?)’4 (Amd> & >

I

where o1 = ap is applied proportional stress, & = ‘f—o is initial strain rate, 4* = 1 is a unit cross-sectional

area and o, = gp/(1 4+ ¢*) is the RDA fatigue limit in symmetrical cycle. Thus
A 2B 1
_ H 0 + 1‘ (96)
Ared JP(/)* 1 =+ (P*

6.2.1. Steel bar as prototype
Proportional stress as reaction-stress of clamped steel bar is gp = 142 MPa (see Section 3.2). Thus

] 5.0.52
A _\/2 21x10°:052 1 4115

Aeq 142 .2 142
and

» A4 ;
{0 — g1 +A_d.8<Yt> =P +11.15- 69,
re

We then obtain
(1) *)
ey =(1+2-9")=5"¢p,

ey =0.018258 + 11.15 - 5-0.000677 = 0.056001.
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Table 6
Total strains for strain hardening branch of metallic bars
Aluminum Copper Brass Lead Steel prototype

Ey [N/m?] 69 600 000000 1.16E+11 90200000000 157000000 000 2.1E+11
@* 5.907559 1.967573 2.113035 2.063863 1.998469
Iy [em] 49.24 44.70 43.22 33.647 50
o, [MPa] 48.554622 98.23 81.72228 23.466327 142.00
A/ Areq 4.246626 9.04552 79.80394 4.995701 11.15333
&d %] 9.2239 6.0309 6.358 79885 5.5973
& 10.9741 7.5381 7.8858 9.5296 7.1056
z*Y'm 12.72423 9.045202 9.413611 11.07068 8.613975
&Y 14.4744 10.5523 10.9414 12.6118 10.1223
E*Y@ 16.2245 12.0595 12.4692 14.1528 11.6307
P 17.9747 13.5666 13.997 15.6939 13.139
8;(” 19.7248 15.07372 15.53479 17.23497 14.6474
&P 21.4749 16.5809 17.0526 18.776 16.1558
e 23.2251 18.088 18.5804 20.3171 17.6641
&1 24.97522 19.59511 20.10317 21.85818 19.17246
P 26.7254 21.1022 21.636 23.3993 20.6803
& 28.4755 22.6094 23.1638 24.9403 22.1892

The results of the next iterations are listed in Table 6.

6.2.2. Metallic bars as true models

Assuming the RDA similitude of metallic bars we obtain the table (Table 6) of the total strains for strain
hardening branch.

After secondary creep range the material again starts resisting further tensile strain and to elongate it by
a length A/ the force should be increased.

7. Numerical test

The computational efficiency of the algorithm described in the previous sections was verified to the
example, the results of which are known in literature (Froli and Royer-Carfagni, 2000). In the order to
simulate experimental results, they refer to the test reported in their paper, where the specimen presented
approximately

Diameter of the bar ¢ = 1.6 cm
Young’s modulus £y = 2 x 10° MPa
Upper yield stress Yy = 390 MPa
Lower yield point ¥, = 358 MPa

The yield stress ¥; = 358 MPa is in good accordance with yield value of mild-steel Fe E355 recom-
mended in prEN 10113: (¢y = 355 N/mm?).

7.1. RDA results

7.1.1. Proportional stress

The values of physical parameters of mild-steel: ¢, ar, p and Ey are taken from the handbook of Modern
Physics (Williams et al., 1968); specific heat [kcal/kg °C]: 0.1395; density [kg/m’]: 7850; coefficient of linear
expansion [1/°C]: 0.0000105; elastic modulus [N/m?]: 2x 10!
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2-p-c_2-7850-0.1395
% 0.0000105

op =2.0859 x 10° N/m” = 208.59 MPa,

op _ 208.59 x 106

B= o qon = 0001043

&p =

7.1.2. Elasticity stress

Assuming the RDA similitude of metallic bars (prototype: /o = 50 cm, 4 = 1.9> x n/4 = 2.835 cm?,
ep = 0.000677; true model: 4 = 1.6> x n/4 =2.01 cm?, & = 0.001043) we may determine the elasticity
stress taking into account the RDA Euler number.

A Eppr /2.01 0.000677
= . IEP 50,/ T 3392
foum = logr Apr Epim 50 2.835 0.001043 33.92 em,

T ¢ 16 L  33.92 Bl 1
k=y\g=4= 3 ~04em (k)E 04 ST =TT, 0198941 /em

Is the fact that point of elasticity, E of steel is in good accordance with slenderness ratio of 84.8, because
elastic Euler’s theory for this type of low-carbon steel (Fe E355 recommended in prEN 10113:) is not valid
for slenderness ratio under the 85.

_EH'TE2_2X105'752

op = - — 274.5 MPa,
g (LO>2 84.82
k. E
6
_ o _ 2145 X100 501372,

LT 2 x 100

7.1.3. Structural (visco-elastic) creep coefficient
n 7

- — —2.95
T4,y 4-3392-785x 10

7.1.4. Stress levels for plastic yielding
The first iteration (yield stress and lower yield point)
En _ Eu
1+¢ 395

EY =

go(\}) =1+ ¢" =395,

&) = (14 ¢") - &p = 3.95-0.001043 = 0.00412,

E 200000 - 7.85 x 1073 - 3.95

RDA H

NOTLE 84.8 - 0.19894 2
k. I "r"(/)g)
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el) = gp — g = 0.001043 — 0.001372,

p

(1) _ EH _ EH

H
p* 295’

200000
YI£1> =gy _|_H/(1) . gél) =367.57 +

-(0.001043 — 0.001372) = 345.23 MPa.

Second iteration
2) En Ey

B =150 T 6o
oY =1+2-¢" =69,
&Y =(142-¢") & = 6.9-0.001043 = 0.0072,

65?:(14-2@*)81)—(14-@*)8E:698P—3958E,

1+ ¢* 3.95
) = gp ————— . g = 0.001043 — ===.0.001372
LR N T 6.9 ’
E E
H® = H _~H
2-¢* 5.9’
200000 3.95
Y[f” =oy +H? . 8;2) =367.57 + : (0.001043 %9 0.001372) = 376.29 MPa.
The third iteration (upper yield point)
g En _ Eu
R 14390 985

o)) =143 9" =985,

&) = (1+43-¢") & =9.85-0.001043 = 0.01027,

8‘%) =1+3-¢")-ep—(1+¢") - eg=985-e —3.95- ¢,
3 1+ ¢* 3.95

@) _ . _ e _272
&y &p 13 ¢ eg = 0.001043 985 0.001372,

E E
e - " _ =H

30" 885

200000 3.95

y® — H®) . B — . SV (0001043 — 222 . 0001372 ) = 71 MP
& oy + & 367.57 + 285 0.001043 985 0.00137 378.7 a,
(13) Ey En

ROT7113.¢° 3935
o =1+13. ¢ =39.35,
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eV = (1413 ¢") - ep = 39.35-0.001043 = 0.04104,
d) =(1+13-¢") - ep— (1 +¢") - g = 39.35- &p — 3.95 - ¢,

1+ ¢* 3.95
(13 — gy — ——— T g =0.001043 — ———.0.001372
TP T 3. E 39.35 372,
E E

H'3) — H _ ©=H

13- ¢+ 3835’

200000 3.95

Yy = H 03 =36757 +=——.(0.001043 — ———.0.001372 | = 372.3 MPa.

oy + % t3835 39.35 a

It will be noted from the curve in Fig. 10 that the proposed RDA provides the isochronous stress—strain
diagram for visco-elastic—plastic yielding of steel bar tested by Froli and Royer-Carfagni (2000) which is
similar to the mild-steel Fe E355 recommended in prEN 10113: (¢y = 355 N/mm?).

7.2. Comparison between RDA model and uniform chain-bar model

An assemblage of 50 long and 53 short elementary units, in which the short units have approximately the
same length as the strain gauges used in Froli and Royer-Carfagni (1999) has been calibrated by applying
their model.

The response of the composite system when its extremities (as in the experiment) are displaced apart at a
velocity of dA//d¢ = 2 mm/min was analyzed using an Ansys finite element code. Fig. 11 shows the mean
reaction-stress of the clamped edge as a function of the average strain Al/Ij.

8. RDA loading functions for Hencky’s total-strain theory
8.1. Octahedral shearing stress—octahedral shearing strain loading function
The material properties generally used in the inelastic analysis of load-carrying members are obtained

from tension and compression specimens in whom the state of stress is uniaxial. If the state of stress in the
load-carrying member is also uniaxial, the relation between stress and strain at any point in the member is

Average RDA stress-strain diagram ofsteel bartested by Froli etal.
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Fig. 10. Average isochronous RDA stress—strain diagram of steel bar tested by Froli and Royer-Carfagni (2000).
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Comparison between RDA and uniform chain-bar model
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Fig. 11. Comparison between RDA model and uniform chain-bar model (Froli and Royer-Carfagni, 2000) solutions.

Overall RDA stress-strain diagram of tested bar
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Fig. 12. Overall isochronous RDA stress—strain diagram of steel bar tested by Froli and Royer-Carfagni (2000).

identical with that obtained from tension and compression tests. If the state of stress in the load-carrying
member is biaxial or triaxial, no simple stress—strain relation exists: a special function, called a yield
condition is required in order to predict the beginning of inelastic strain and so that the elastic—plastic
boundary in the member can be determined after inelastic strains begin. The stress—strain relation in the
inelastic portion is specified by a loading function, which is based on the average of the tension and
compression stress—strain diagrams. Since the loading function must be valid for all states of stress, it is
convenient to first picture the loading function for simple tension.
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The Hencky stress—strain relations introduce the unknown w so that a new independent equation must
be obtained from the loading function. If the von Mises yield condition is being used, the unknown w can
be obtained from as follows

= GHVoct ) (97)

Toct

This relation states that w is known if corresponding values of 7, and y,, are known for any specified
deformation. Thus, an octahedral shearing stress—octahedral shearing strain diagram gives the loading
function. This stress—strain diagram is called the Schmidt (1932) curve by Sokolovsky (1946). In the elastic
range, ® = 1 so that the loading function becomes

Toct = GHVoct' (98)
In the inelastic range, the relation may represent the loading function
Toet = F(Voet)s (99)

where the function, F, is obtained from simple tension test. Let us consider the compressible case in which u
is different from 0.5. In this case the analysis must make use of the deviatory components of stress and
strain.

In the case of the tension test, let ; = ¢ so that o, = 63 = 0. Thus

€] (%)

= 1

a-z, (100)
in which

1
ep=¢ —e=g¢g —5(81 + & +&3),
(101)

1
ezzsz—ezsz—g(sl—f—sz—i—@),

1 2 2

S 261—520'1—5(0'1-1-0'2"‘0'3):01_501:501 =30
| . (102)
S2:o2—S:a2—§(01—|—02—|-03)2—501 =—§o.

The strain measured in the direction of ¢ is & = ¢, so that

Y (P N
62—S1S2—(81 e)( 2> 2+2i

If the material is assumed compressible, for uniaxial state of stress, &, = ¢3 = —ue. For this condition we
have

+ (103)

[NSY s
N

Yoot = % \/(81 —a) t(a—a)+(m—a)= % \/2(81 —&) = %5(81 — &)
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Using the fact that the volume changes are elastic follows:
S 10_1 3(1—2p) 1 (1—2u)

= — = = — . 105
*T3Ky 3°3 En 32Ga(1+p)° (105)
Thus
V2 (1-2p)
s =V2%——_——"""g¢. 106
Vout fg 3 ZGH(I —|—,u)6 ( )
Eq. (106) can also be written in terms of 7, instead of ¢
(1 —2p)
= V26— o Toa, 107
’yout fé’ 2GH(1 _'_'u)f t ( )
where
1 1 V2
Toct=§\/(01—02)2+(02—03)2+(03—01)2Zg 20%270- (108)
If the material is assumed incompressible, ¢ = 0.5. For this condition Eq. (106) gives
Yot = V28 (109)

8.2. Octahedral shearing stress—octahedral shearing strain RDA diagram

In Sections 5 and 6 it was proposed that the average of the tension and compression stress—strain
diagram could be approximated by 1 <i < n and 1 < j < m points in which stress and strain are closely
determined by RDA. In the visco-elastic—plastic range of the RDA stress—strain diagram,
&= ag? = (1 +ip*)ep (see Eq. (89)). This value of ¢ can be substituted into Eq. (107) to give loading function
F%. Now, let us present the extension of von Mises yield function in the first and ith iteration where first
total strain leads from Eq. (81)

1 1
& = oy

&p = (1 + Q*)SP’
so that
Voct,y = [ - Toct,y = Q) — ——7 o - loct,
EEETCHITINVE R En 2G5 (1+u)) "
_ o 3 1 (1=2u)) _ . m] 1
=V2. I+ )7§Toct,PE_H_TToct‘Y = Toery |3(1 + @ )ny — 1 4 2y } £ (110)
where
ny = P _ 0P (111)
Toct,Y (2

The inverse relationship of ¢*(u) (see Eq. (83)) is defined by

W) = [1- ! 1000. (112)

‘ oV
0.002( ;2 ) +1
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Thus

Fy = En o (113)
31+ @*)ny — 1+ 2py

Lower yield point Yp“) = Y. (see Eq. (88)) is obtained from the yield condition, which is based on the
assumption of plasticity and can be substituted into Eq. (110) to give

Yoo = Tou [3(1+ 97)n) — 1+ 240 B (114)
where
(1) _ Toct,P op op
ny =—f/—=—=——— 115
Y Dy oy + i—H (ep — eE) (115)
Thus
F = ff‘ - (116)
31+ )ny — 142y
The ith total strain leads from Egs. (89)
sg) = (pg)z;p = (1 +ip")ep.
Thus
i i s % i i 1
Wl = T [30 +ig")al) — 1+ 24 | B (117)
where
Toct Yy oy + IE(TH (8P - 11:;* 3E)
and
; 1
W= [1- - 1000. (119)
§/0-002<1f;g>) +1
Thus
FO = En (120)

3(1+ip)nl — 1424y

Table 7 presents determining 7. and 7., of metals in the visco-elastic—plastic range, which are analyzed in
this paper. Octahedral shearing stress—octahedral shearing strain diagrams in this range are shown in Figs.
13 and 14.

In the visco-plastic range of the RDA stress—strain diagram, & = S*Ym (see Eq. (94)). It will be seen from
Table 7 that for the last (n = 13) visco-elastic—plastic strain of all metallic bars, Poisson ration is practically
equal to 0.5. Therefore the value of ¢ can be substituted into Eq. (109) to give loading function FU).
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Table 7
RDA procedure for determining octahedral shearing stress and octahedral shearing strain of metals in the visco-elastic—plastic range
Aluminum Copper Brass Lead Steel prototype

Ey [MPa] 69 600 116000 90200 15700 210000
@ 5.907559 1967573 2.113035 2.063863 1.998469
" 0.427196 0.331206 0.339042 0.336251 0.333333
Gy [MPa] 24383 43570 33681 5875 78750
Toctp 22.89 46.31 38.52 11.06 66.94
Joctp 0.000939 0.001063 0.001144 0.001883 0.000850
Toct E 30.132 60.94 50.69 14.56 88.15
YoetE 0.001236 0.001399 0.001505 0.002478 0.001119
o 6.907559 2.967573 3.113035 3.063863 2.998469
iy 0.436293 0.373629 0.378078 0.37661 0.374601
Tty 35.23 91.91 74.68 21.61 132.30
ny 0.649585 0.503821 0.515844 0.511998 0.505950
oely 0.006749 0.003354 0.003787 0.006138 0.002709
D 34.00 84.48 68.92 19.92 121.70
P 0.672997 0.548158 0.558960 0.555503 0.550025
2 0.006751 0.00337 0.003802 0.006165 0.002722
oY 12.815118 4.935146 5.22607 5.127726 4.996938
iy 0.463271 0.415324 0.419253 0.417967 0.416191
2 35.79 94.37 76.65 22.18 135.33
) 0.639405 0.490708 0.502583 0.498725 0.492833
72 0.012603 0.005773 0.006559 0.0100607 0.00467
oY 18.722677 6.902719 7.339105 7.191589 6.995407
Y 0.474086 0.436254 0.439558 0.438481 0.436986
) 35.90 95.32 77.36 22.40 137.17
) 0.637557 0.485805 0.497959 0.494001 0.487989
78 0.018444 0.008162 0.009299 0.015031 0.006607
s 24.630236 8.870292 9.45214 9.255452 8.993876
sy 0.479915 0.448839 0.451652 0.450737 0.449464
@) 35.85 95.20 77.26 2236 137.01
) 0.638480 0.486383 0.498627 0.494626 0.488577
& 0.02428 0.010538 0.012028 0.019478 0.008535
oY 30.537795 10.837865 11.565175 11.319315 10.992345
s 0.483561 0.45724 0.459679 0.458886 0.457782
) 35.77 94.92 77.03 22.30 136.60
) 0.639742 0.487833 0.500092 0.496090 0.490027
98 0.030104 0.012909 0.014749 0.023811 0.010457
¥ 36.445354 12.805438 13.67821 13.383178 12.990814
e 0.486056 0.463245 0.465394 0.464697 0.463724
79 35.72 94.64 76.81 22.24 136.19
) 0.640755 0.489291 0.501565 0.497562 0.491503
&) 0.035941 0.015276 0.017467 0.028198 0.012375
oY) 42.352913 14.773011 15.791245 15.447041 14.989283
) 0.487871 0.467753 0.469671 0.469049 0.468181
< 35.67 94.38 76.61 22.17 135.83
) 0.641686 0.490610 0.502861 0.498937 0.492816

40 0.041773 0.017638 0.020182 0.032562 0.014293
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Table 7 (continued)

Aluminum Copper Brass Lead Steel prototype
o 48.260472 16.740584 1790428 17.510904 16.987752
e 0.489251 0.47126 0.472991 0.47243 0.471647
® 35.62 94.17 76.43 22.13 135.52
) 0.642451 0.491740 0.504009 0.500000 0.493947
& 0.047592 0.020002 0.022893 0.036946 0.016208
o) 54.168031 18.708157 20.017315 19.574767 18.986221
i) 0.490335 0.474067 0.475644 0.475133 0.47442
) 35.59 93.98 76.29 22.08 135.26
n) 0.643046 0.492727 0.504974 0.501067 0.494911
79 0.053425 0.022363 0.025607 0.041312 0.018124
o 60.07559 20.67573 22.13035 21.63863 2098469
i 0.49121 0.476365 0.477812 0.477344 0.476688
{10 35.56 93.82 76.16 22.05 135.02
P 0.643558 0.493568 0.505787 0.501817 0.495758
H{10) 0.059251 0.024723 0.028315 0.045638 0.020037
ol 65.983149 22.643303 24.243385 23.702493 22.983159
i 0.49193 0.47828 0.479617 0.479185 0.478579
(D 35.53 93.68 76.06 22.01 134.83
P 0.644070 0.494289 0.506508 0.502570 0.496486
7y 0.065076 0.027081 0.031029 0.050041 0.021951
o 71.890708 24.610876 26.35642 25.766356 24.981628
) 0.492533 0.479901 0.481143 0.480741 0.480179
(2 35.52 93.56 75.96 21.99 134.66
) 0.644412 0.494911 0.507137 0.503216 0.497112
32 0.070921 0.029439 0.033737 0.054428 0.023865
oY 77.798267 26.578449 23.469455 27.830219 26.980097
) 0.493046 0.48129 0.482451 0.482076 0.48155
7Y 35.50 93.46 75.88 21.96 13451
P 0.644754 0.495485 0.507704 0.503756 0.497669
A3 0.076747 0.031801 0.036449 0.058779 0.025778

, " g A g e A e
vgﬁlzﬁsymzﬁ(s%)@l—e@)=ﬁ{<1+nw)+A—[1+0+1)w]}“"

red red E
; A 1 i
=3t (1 4+ n0") +——[1 + (i + D] p —m" (121)
Ared EH
Thus
) E
FU = i , (122)
3{(1+n07) + A1+ G+ D] 0
where
mU) = ToetP _ 0P gp (123)

W v o+ B AL+ G+ Deler — (1+ @7)ee}
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Octahedral shearing stress-octahedral shearing strain diagrams in the
visco-elastic-plastic range
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Fig. 13. Octahedral shearing stress—octahedral shearing strain diagrams of metals in the visco-elastic—plastic range.
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Fig. 14. Overall octahedral shearing stress—octahedral shearing strain diagrams of metals.

Table 8 presents determining 7. and 7., of metals in the visco-plastic range. These values are shown in
Fig. 14.

In a hollow-torsion test, the only no vanishing components of stress and strain are t,, = 7 and 7,, = y.
From the following equations leads:

2 3 V2
Yoct = 3 \/(Sx - SY)Z + (ey — 82)2 + (& — SX)z + P (V)ch + V}Zz + Vgx) = ﬁ% (124)

1 2
Toct = § \/(Ux - UY)Z + (JY - 62)2 + (Jx - 62)2 + 6(’[,%); + T)zzz + ’C)%z) = gr' (125)

This means that 7—y diagram and the 74—y, diagram for a given material have similar shapes.
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Table 8
RDA procedure for determining octahedral shearing stress and octahedral shearing strain of metals in the visco-plastic range
Aluminum Copper Brass Lead Steel prototype

Ey [MPa] 69 600 116000 90200 15700 210000
s 5.907559 1.967573 2.113305 2.063863 1.998469
I 0.5 0.5 0.5 0.5 0.5
Io [em] 49.24 44.70 43.22 33.647 50
o, [MPa] 48.55 98.23 81.72 23.47 142.00
A/ A 4.246636 9.04552 7.980394 4.995701 11.15333
mh 0.53920 0.44512 0.45332 0.45066 0.44655
9 [l 13.0446 8.5290 8.9916 11.2974 7.9158
7 42.45 104.03 84.98 24.55 149.90
m? 0.48012 0.40117 0.40813 0.40585 0.40236
22 15.5197 10.6605 11.1522 13.4769 10.0488
2 47.67 115.43 94.39 27.26 166.37
m® 0.45514 0.38231 0.38877 0.38665 0.38339
7% 17.9948 12.7918 13.3129 15.6563 12.1820
) 50.28 121.12 99.08 28.61 174.60
m® 0.44140 0.37180 0.37800 0.37600 0.37284
2@ 20.4699 14.9232 15.4735 17.8358 14.3151
& 51.85 124.55 101.91 29.42 179.54
m®) 0.43267 0.36513 0.37115 0.36919 0.36613
7% 22.9449 17.0547 17.6341 20.0151 16.4483
) 52.90 126.82 103.79 29.96 182.83
m® 0.42666 0.36050 0.36641 0.36449 0.36148
29 25.4201 19.1861 19.7947 22.1945 18.5814
7% 53.64 128.45 105.14 30.35 185.18
m) 0.42225 0.35711 0.36293 0.36102 0.35807
70 27.8951 21.3175 21.9554 24,3739 20.7146
77 54.20 129.67 106.15 30.64 186.94
m® 0.41889 0.35451 0.36027 0.35837 0.35545
7® 30.3701 23.4489 24.1160 26.5533 22.8478
) 54.64 130.62 106.93 30.87 188.32
m® 0.41624 0.35246 0.35817 0.35630 0.35340
) 32.8453 25.5803 26.2767 28.7327 24.9808
) 54.98 131.38 107.56 31.05 189.42
m19 0.41407 0.35080 0.35647 0.35463 0.35173
10 35.3203 277117 28.4372 30.9121 27.1140
710 55.27 132.00 108.07 31.19 190.32
m1D 0.41231 0.34942 0.35505 0.35319 0.35035
i) 37.7954 29.8430 30.5979 33.0916 29.2471
70D 55.51 132.52 108.50 31.32 191.06
m12 0.41081 0.34827 0.35387 0.35203 0.34919
1 40.2704 31.9745 32.7586 35.2709 31.3803
R 55.71 132.96 108.86 31.42 191.67

9. Conclusion

The RDA method has been applied to predict and described some different aspects of inelastic behavior
of metallic bars.

The good agreement between RDA-predicted and measured data for the laboratory-tested steel bars gave
confidence in the RDA predictions as a credible base for explanation of the phenomenon of discontinuous
plastic deformation.
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e Proportional stress or reaction-stress of clamped bars is obtained using physical characteristics of metal
only, like as: specific heat, coefficient of linear thermal expansion and mass density.

¢ Elasticity stress of the bars under compression is obtained by Euler’s formula and RDA similitude from
which we have that elasticity stress also becomes dependent upon the dimensions of the bar (its length
and diameter) and thus is no more a physical characteristics of the material only.

¢ In ductile materials like metals some difference between point of proportionality and point of elasticity
produce the deviation from perfect elasticity with dissipation of mechanical energy through quasi-vis-
cous flow or visco-elastic creep. This is the reason of the drop (lower-yield point) in the stress—strain
curve in the average o—¢ diagrams.

e Transition from visco-elastic—plastic range beyond the lower-yield point is obtained using by iterative
procedure and must be continued until the magnitude of the error of the stress level becomes lesser than
some previously assigned value.

e Transition from strain hardening (visco-plastic) range with the reduction of cross-sectional area is diffi-
cult to obtain by the experimental investigations except determination the ultimate or fracture stress and
strain. Above determined RDA iterative procedure through strain hardening branch (see Sections 6)
may be used for comparison when alternative members under various load types are considered. After
reaching ultimate residual strains the convergences of stress levels are finished, thus indicating a well-de-
fined RDA fracture stresses as shown in Fig. 9.

e The RDA isochronous stress—strain diagram is used to predict the loading functions for the material of
metallic bars. Hencky’s total-strain theory is used under the assumption of compressibility in the visco-
elastic—plastic and assumption of incompressibility in the strain hardening (visco-plastic) range.
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